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ABSTRACT

We have measured the b-quark production cross section for |y| < 1 using a

sample of muons with associated jets collected with the DØ detector in pp collisions

at
√
s = 630 GeV at the Fermilab Tevatron. The measured b-quark cross section is

consistent in shape with O(α3

s
) QCD predictions, but exceeds them in normalization

by roughly a factor of 2.5.
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CHAPTER 1

INTRODUCTION TO HIGH ENERGY PHYSICS

High energy physics (HEP), or elementary particle physics (EPP), is the study of the

elementary particles in nature and their interactions. At the atomic level, matter is

divisible into protons, neutrons, and electrons; quarks are currently considered to be

the fundamental, or indivisible, constituents of protons and neutrons. The six known

quarks are called, in order of increasing mass, up, down, strange, charm, bottom, and

top.

The two heaviest quarks, bottom and top, were discovered at Fermilab relatively

recently (1977 and 1995 respectively). They are of special interest, because heavy

quark production theories can be treated perturbatively, and the cross sections can

be expressed as a convergent power series in the strong coupling constant.

The bottom quark is experimentally identifiable and has a relatively large cross

section at Tevatron energies. Measurements of bottom quark production test the

current description of QCD, as well as providing insight into other heavy flavor pro-

duction processes, such as charm and top.

The bottom quark production cross section has been measured at Fermilab at

√
s = 1.8 TeV [1][2][3][4], and all measurements exceed theoretical predictions by

approximately a factor of 2.5. In addition, the UA1 collaboration measured bottom

quark production at
√

s = 630 GeV [5]. The UA1 measurement exhibited somewhat

better agreement with the theoretical predictions available at the time.

This dissertation, which presents an independent measurement of bottom quark
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production for a center-of-mass energy
√

s = 630 GeV, is arranged in nine chapters

and three appendices. The remainder of Chapter 1 provides an introduction to high

energy physics theory, including a brief discussion of QED and QCD, as well as out-

standing problems with the theory. Chapter 2 deals with the more specific topic of

heavy quark production within the framework of QCD. Monte Carlo simulation of the

theoretical predictions are discussed in Chapter 3. The DØ detector is described in

detail in Chapter 4. Chapter 5 provides a description of the data sample acquisition

and selection, while Chapter 6 discusses the techniques used to separate signal from

background in the data sample. Chapter 7 discusses the unsmearing of the muon

momentum spectrum. Chapter 8 presents final measured cross sections, and Chap-

ter 9 provides a brief discussion of the results, including a comparison to previous

measurements.

The three appendices include parenthetical information not discussed in the chap-

ters. Appendix A provides a description of the coordinate systems and conventions

used in the analysis. Appendix B provides a discussion of the error analysis tech-

niques that are used to estimate the uncertainty on the measurement. The locations

of the various pieces code used to perform the analysis are listed in Appendix C.

1.1 High Energy Physics, Historically

Particle physics is often said to have begun in ancient Greece. Democritus, a student

of Leucippus, was one of the earliest philosophers to suggest that if matter is succes-

sively divided into smaller and smaller pieces, eventually a piece will exist that can

not be subdivided. This smallest indivisible piece of matter was called atomos by
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Democritus, a word from which modern man derived the modern term atom.

Until J. J. Thomson discovered the electron, demonstrating that the atom was

indeed not fundamental, particle physics remained largely the same as it was in 400

B. C. Since Thomson’s discovery, however, particle physics has developed at an as-

tonishing rate.

When P. A. M. Dirac’s relativistic wave equation was unsuccessful at describing

the magnetic properties of the proton, and all attempts at building an electron-proton

model of the atom failed, it became clear that the explorations of particle physics

had not come to an end. In 1932, the neutron and the positron (anti-electron) were

discovered by Chadwick and Anderson respectively, adding to the confusion.

Shortly thereafter, Hideki Yukawa proposed a new massive particle, the meson.

When the muon was discovered in cosmic rays in 1932, it was mistaken for Yukawa’s

meson. This idea was discarded in the late 40s when Cecil Powell found the pion.

High energy electron experiments performed by Richard Hofstadter suggested that

nucleons, the collective term for protons and neutrons, had internal structure that

electrons did not have. This suggestion led to Murray Gell-Mann’s hypothesis, called

the Eight-fold Way [6]. The Eight-fold Way introduced quarks, fractionally charged

point-like particles that could bind together into baryons (three-quark bound states)

and mesons (two-quark bound states). The properties of the proton and neutron

were explained by two of Gell-Mann’s quarks, the up (u) and the down (d). The

postulation of quarks came just in time to explain the “zoo” of particles that were

being found at the time.

To probe more and more deeply into the substructure of matter, particle physicists

had to use accelerators of increasing energy. Elementary particle physics developed
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Table 1.1: The three generations of quarks and leptons

into high energy physics, each discovery bringing about more unanswered questions.

The sections that follow detail our present knowledge.

1.2 Leptons, Quarks, and the Fundamental Forces

It is currently believed that the whole of nature consists of twelve fermions (half-

integral spin), their antiparticles (opposite charge), and the gauge bosons (integral

spin) that mediate the interactions between them. The twelve fermions are divided

into six leptons, which experience only the electromagnetic, weak, and gravitational

forces, and six quarks, which can interact additionally via the strong interaction.

Quarks and leptons are further subdivided into three generations (Table 1.1). Each

new generation is identical in charge to its predecessor on the left; but the masses

differ (increasing mass to the right).

1.2.1 Leptons and Quarks

The charged leptons (e, µ, and τ) were the first fermions to be discovered because

observations of their interactions are not obscured by the strong force. The muon

discovery paper was published in 1937 [7], and the discovery of the tau, for which

Martin Perl received the Nobel Prize in 1995, was announced in 1975 [8].

Each charged lepton has an associated neutrino that, until the summer of 1998,
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Lepton Electric Charge Mass (MeV/c2) Lifetime (s)

e -1 .511 stable
µ -1 106 2.2 × 10

−6

τ -1 1777 291 × 10
−15

νe 0 < 15 eV/c2 stable
νµ 0 < 0.19 stable
ντ 0 < 18 stable

Table 1.2: The properties of the leptons.

when SuperKamiokande presented evidence of a nonzero neutrino mass difference be-

tween νµ and ντ , was assumed to be massless. The electron neutrino was postulated

to describe the continuous energy spectrum in neutron β-decay by Enrico Fermi in

1934 [9]. Evidence for the muon neutrino and the tau neutrino was subsequently dis-

covered, although the tau neutrino has yet to be directly observed. SuperKamiokande

presented exciting evidence of a nonzero neutrino mass difference between νµ and ντ ,

due to the observation of neutrino oscillations in atmospheric neutrinos [10]. Some

fundamental properties of the leptons are given in Table 1.2. Charges are given in

units of proton charge.

Quarks, the remaining fundamental fermions, were far more difficult to discover,

as they interact via the strong nuclear force. The strong force binds quarks into

hadronic matter; as a consequence, quarks are not observable as free particles. The

three lightest quarks, up (u), down (d), and strange (s), were proposed in 1964 by

Gell-Mann and Zweig to explain the properties of the hadrons that had been observed.

The discovery of the J/ψ (cc bound states, also called charmonium) and the Υ (bb

bound states, also called bottomonium) mesons provided evidence for the existence

of three quark doublets. The final known member of the quark family, the top quark,

was discovered at Fermi National Accelerator Laboratory in 1995 [11][12]. Some
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Quarks Name Electric Charge Mass

d down −

1

3
5-15 (MeV/c2)

u up +
2

3
2-8 (MeV/c2)

s strange −

1

3
100-300 (MeV/c2)

c charm +
2

3
1.0-1.6 (GeV/c2)

b bottom −

1

3
4.1-4.5 (GeV/c2)

t top +
2

3
180 (GeV/c2)

Table 1.3: Known properties of the quarks.

fundamental properties of the observed quarks are given in Table 1.3.

1.2.2 Fundamental Forces

The fundamental fermions experience interactions via four forces: the electromagnetic

force, the weak nuclear force, the strong nuclear force, and gravitation. Each force is

mediated by the exchange of a gauge boson between fermions. The electromagnetic

interaction affects all charged fermions and is mediated by the exchange of photons.

The strong interaction affects only quarks and is mediated by gluon exchange. The

weak nuclear force is mediated by the massive W and Z bosons and affects all fermi-

ons. Gravitation, the weakest of the four fundamental forces, arises from the exchange

of a spin 2 graviton and only mediates interactions between massive fermions. Prop-

erties of the four fundamental forces and their mediating gauge bosons are presented

in Table 1.4. Masses are given in GeV/c2.

1.2.3 Feynman Diagrams

Richard Feynman developed a system of graphically representing particle interactions

that allowed physicists to not only visualize the interactions but perform difficult

calculations in a straightforward manner. In Feynman diagrams, time increases to
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Gauge Boson Typical Fermions

Force Name Mass Charge Spin Coupling Affected

Strength

Strong Gluon (g) 0 0 1 ˜1 quarks
Electro−
Magnetic

Photon (γ) 0 0 1 1

137
charged

Weak
W±

Z

80
91

±1
0

1
1

˜10−5 all

Gravity Graviton (G) 0 0 2 ˜10−38 massive

Table 1.4: The four fundamental forces of nature.

the right. The basic component lines of any Feynman diagram are shown in Figure

1.1. All fermions are denoted with a solid straight line, while the gauge bosons are

denoted with a variety of lines. In some Feynman diagrams, the fermion lines use

arrows to show the direction in time of the particle. Anti-fermions are drawn as

fermions moving to the left.

As an example, Figure 1.1 depicts electron-positron annihilation. The electron and

positron at the left annihilate into a photon, which then emits an electron-positron

pair. This interaction is also known as “time-like Bhabha scattering.”

Feynman diagrams not only give a visual presentation of a process, they also

prove invaluable in calculations associated with that process. Knowledge of the forms

of the propagators associated with the physical process (in Figure 1.1, the photon)

and the nature of the interaction vertex, allows one to write down a simple form

for many physical quantities (cross sections, lifetimes, etc.). For a more thorough

introduction to Feynman diagrams, the interested reader is directed to consult an

elementary particle physics text (e.g. [13]).
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Figure 1.1: Representations of various particles in Feynman diagrams (top). Time-
like Bhabha scattering is shown at bottom.
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1.3 The Standard Model

The current theory of how the fundamental fermions interact is embodied in the

Standard Model (SM). As a theory, the SM has enjoyed predictive power, accurately

predicting cross sections, decay rates, and even the masses of the W and Z bosons.

To date, no experiment has ever significantly contradicted the predictions of the SM.

The Standard Model can be understood as a union of field theories, each of which

describes the way one of the four fundamental forces govern the behavior of particles.

In a quantum field theory, particles are associated with fields, functions of space-time

coordinates. Each field theory in the SM is required to be locally gauge invariant,

implying that the Lagrangian description of the interaction is invariant under a local

phase transformation. Requiring local invariance necessarily implies the existence of

a gauge boson and its coupling to the fermions.

The Standard Model unifies the strong interaction, the weak interaction, and the

electromagnetic interaction. In the SM, the electromagnetic and weak interactions

may be unified under a single gauge group, but attempts to merge the electroweak

(EW) gauge with the theory of strong interactions (quantum chromodynamics) have

been unsuccessful. The unification of these gauge groups into a Grand Unified Theory

(GUT) would eliminate many of the seemingly arbitrary parameters in the SM, which

include particle masses and coupling strengths. Because no successful GUT has been

developed, the electroweak and strong interactions are more conveniently considered

separately.
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1.3.1 Electroweak Theory

A fundamental part of the Standard Model, quantum electrodynamics (QED) is per-

haps the most easily understood field theory. The Lagrangian that describes QED is

invariant under local gauge transformations of the electron field ψ(x) and the photon

field Aµ(x) for all space time points x. These transformations are of the form

ψ(x) → eieΛ(x)ψ(x) (1.1)

Aµ(x) → Aµ(x) + ∂µΛ(x). (1.2)

Here, Λ(x) is arbitrary, and e is the familiar electron-photon coupling strength. The

exact local gauge invariance of the Lagrangian requires a massless gauge boson. As

a result of local gauge invariance, QED is also renormalizable, indicating that all

unphysical infinities can be eliminated through a cancellation procedure.

The phase factor eiΛ(x) belongs to the symmetry group U (1). U(1) is an Abelian

unitarity group in one dimension, because the generator of U(1) commutes with

itself. In general, however, the gauge groups in the SM are more complicated. Both

the electroweak and QCD theories use non-Abelian groups, resulting in self-coupling

gauge bosons.

Because the fundamental fermions are arranged in doublets, they can be described

as a two-component field ψ = (ψ1, ψ2), where the indices indicate a doublet from

Table 1.1. A two-component field allows introduction of gauge transformations Λ,

where Λ is a 2×2 hermitian matrix. This two dimensional matrix suggests an SU (2)

symmetry, where SU(2) is the special unitarity group in two dimensions. SU (2)

transformations permit changing one member of the doublet through non-zero off-

diagonal terms. Requiring local gauge invariance results in the introduction of three
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massless gauge bosons.

Unifying the SU(2) group with U(1) results in another theory, SU (2)⊗U(1), the

Glashow-Salam-Weinberg theory of electroweak interactions. This combined theory is

designed to be invariant under two types of transformations, each of which is described

by the coupling of a weak current to a vector boson:

• Weak Isospin, T, the generator of the SU(2)L group, and

• Weak Hypercharge, Y, the generator of the U(1) group. The hypercharge is

related to the isospin and electric charge by the relation

Q = T3 +
1

2
Y, (1.3)

where T3 is the third component of weak isospin.

For this group of transformations, only left-handed fermions may transform under

both SU (2)L and U(1)Y (right-handed neutrinos have yet to be discovered). Right-

handed fermions are limited to transformations under U(1).

The local gauge invariance of SU(2)L ⊗ U (1)Y transformations requires the in-

troduction of four massless gauge bosons — three Wµ for SU(2)L, and one Bµ for

U(1)Y . The short range of the weak interaction, however, requires the existence of

three massive bosons (W±, Z0). To reconcile this contradition, the Higgs mechanism

[14] is employed.

The Higgs mechanism introduces four scalar fields ϕ
i
into the electroweak La-

grangian. Conventionally, the fields are arranged into an isospin doublet with Y = 1:

ϕ =




ϕ+

ϕ0


 (1.4)
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with

ϕ+ = 1√
2
(ϕ1 + iϕ2)

ϕ0 = 1√
2
(ϕ3 + iϕ4)

. (1.5)

Choosing the vacuum expectation value to be

〈ϕ〉
0
=

1√
2




0

v


 (1.6)

will spontaneously break the symmetry of SU(2)L⊗U (1)Y , giving rise to the massive

gauge bosons. Note that the choice of 〈ϕ〉
0
will remain invariant under U (1) trans-

formations for electromagnetic charge, so the photon remains massless. The resulting

bosons and their masses are given by

W±
µ
=

1√
2

(
W

1

µ
∓ iW 2

µ

)
M 2

W =
(
gν

2

)2

Zµ = −Bµ sin θW +W 3

µ cos θW M 2

Z =

(
MW

cos θW

)2

Aµ = Bµ cos θW +W 3

µ sin θW M 2

A = 0,

(1.7)

where θW is the weak mixing angle
(
sin

2
θW = 0.23

)
.

The Higgs mechanism not only provides mass to theW and Z bosons while keeping

the photon massless; it also introduces a massive scalar particle, the Higgs boson. In

addition, the Higgs mechanism is required to generate particle masses in a gauge

invariant way. The mass of the Higgs is one of the few experimentally unmeasured

free parameters in the Standard Model.

1.3.2 Quantum Chromodynamics (QCD)

The third fundamental force included in the Standard Model is the strong nuclear

force, which acts only on quarks. The equivalent to electromagnetic charge for the

strong force is called color. Quarks can assume one of three colors, so any particular
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quark can be described by a three-component field ψ = (ψ (red) , ψ (green) , ψ (blue)).

The three-color nature of the quarks suggests an SU(3) group, where each transfor-

mation can be described as a transformation under a 3 × 3 hermitian matrix. The

gauge theory based on the SU(3) color group is called quantum chromodynamics

(QCD).

Local gauge invariance of the SU(3) color group requires the introduction of eight

massless gauge bosons. These mediators of the strong force are eight bi-colored gluons.

Because QCD is a non-Abelian gauge theory, the gluons couple with each other in

the same fashion as vector bosons in weak interactions.

Quarks and gluons have never been observed as free particles; they are confined

to colorless bound states. As the distance between two bound quarks increases, the

potential energy due to the color interaction becomes very large, attempting to keep

the two quarks from separating. This increase in force with increasing distance is

known as infrared slavery. As the distance between particles decreases, the quarks

begin to act like free particles, a feature of QCD called asymptotic freedom.

If the potential energy becomes great enough, a new pair of quarks is created. For

very energetic collisions, many of these pairs may be created, resulting in a shower of

particles all moving in the same direction. Each particle, called a hadron, is required

to be colorless, and the resulting hadronic shower is called a jet. The entire showering

process is referred to as hadronization.

Two types of hadrons may appear in the final state jet: mesons and baryons.

Mesons consist of quark-antiquark bound states, the colors of which must result in

a colorless meson (allowed color combinations include rr, gg, bb). Baryons exist as

three-quark or three-antiquark bound states, the colors of which must also combine
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to exhibit no net color (rgb, rgb).

The SU(3) group representing the strong force can be combined with the trans-

formation groups of the electromagnetic and weak forces. This unification of groups

results in a gauge invariant theory (SU(3)⊗ SU (2)⊗ U(1)) known as the Standard

Model.

1.4 Using the b-quark to Probe QCD

The bottom quark provides us with a quantitative test of heavy flavor perturbative

QCD (pQCD). Quantitative tests are made possible because b-quarks are experimen-

tally identifiable. Furthermore, expansions in pQCD are expressed in terms of αs,

the strong coupling constant. The coupling constant runs with mQ, getting smaller

with increasing quark mass, so perturbative expansions in αs are more stable for the

massive bottom quark.

Theoretical calculations are currently available to order O (α3

s
) (next-to-leading

order, or NLO) for the inclusive b-quark production cross section. The current effort

to understand heavy flavor production was prompted by the disagreement between

predictions and measurements of the b-quark cross section made by the DØ and CDF

collaborations at
√
s = 1.8 TeV. Knowing the order to which pQCD is correct for

a given process increases our understanding of the reliability of QCD and catalyzes

theoretical efforts to improve it.
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CHAPTER 2

THEORY OF HEAVY QUARK PRODUCTION

Heavy quarks are produced in hadron-hadron interactions during collisions of a parton

from each hadron. The general expression for the heavy quark production cross

section in collisions between two hadrons A and B is [15]

dσH1H2
=
∑
i,j

∫
dx1dx2dσ̂ij (x1P1, x2P2, k1, k2,m, µ)F 1

i (x1, µ)F
1

j (x2, µ) (2.1)

where k1 and k2 are the momenta of the quark and antiquark, F 1

i are the structure

functions for incoming parton i in hadron 1, m is the mass of the heavy quark, µ is

the renormalization and factorization scale, and dσ̂ij is the partonic cross section for

ij → QQX with a partonic center-of-mass energy ŝ. The scattering process is shown

graphically in Figure 2.1.

The terms of dσ can not be computed analytically. The structure functions and

partonic cross section must be expanded in a power series of the strong coupling

constant αs:

dσ̂ij (ŝ,m, µ) = α2
s (µ) f

(0)
ij

(̂̂s,m2
)
+ α3

s (µ) f
(1)
ij

(
ŝ,m2

)
+ ... (2.2)

F 1
i (x1, µ) = g

A,(0)
i (x1, µ) + αs (µ) g

A,(1)
i (x1, µ) + ... (2.3)

where f , g, and µ depend on the scheme used for factorization and renormalization.

On the right side of the expression, (0) and (1) refer to the leading order (LO) and

next-to-leading order (NLO) terms respectively.
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Figure 2.1: Leading order heavy quark production.

2.1 The Strong Coupling Constant

The strong coupling constant is not really a constant; it depends on the momentum

transfer in the process of interest. This behavior is termed running. For calculations,

the strong coupling constant is described at a fixed renormalization scale µ = Q0.

This value is generally chosen to be evaluated at the mass of the heavy quark being

produced to reflect the mass scale. The coupling’s dependence on µ is determined by

the renormalization group equation

µ2
∂αs

∂µ2
= β (α

s
(µ))

= −b0α
2

s
(µ)− b1α

3

s
(µ) +O

(
α4

s
(µ)

)
(2.4)

where

b0 =
11nc − 2nf

12π
(2.5)

and

b1 =
51nc − 19nf

24π2
. (2.6)

In the expressions for the b coefficients, nc is the number of colors in SU (3) (nc = 3),

and nf is the number of quark flavors with a mass below the renormalization scale.
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Terms involving nc correspond to 3-gluon vertex diagrams, while terms involving nf

correspond to quark loop diagrams. Solving 2.4 for leading order (terms of O (α3

s
(µ))

and higher are neglected) yields the LO approximation for the running coupling con-

stant:

αs (µ) =
α
s
(Q0)

1 + b0αs (Q0) ln
(
µ2

Q2

0

) . (2.7)

The running coupling constant should not be expected to depend on Q0, so the

expression for αs (µ) is generally rewritten in terms of the QCD mass scale, Λ, with

Λ defined implicitly by

ln
µ
2

Λ2
= −

∫
∞

αs(µ)

dx

β (x)
. (2.8)

Rewriting expression 2.7 results in

αs (µ) =
1

b0 ln
(
µ2

Λ2

) . (2.9)

Λ is a measure of the scale at which QCD coupling approaches unity.

The structure of the leading order QCD coefficient b0 in 2.4 requires both in-

frared slavery and asymptotic freedom. With three colors and six flavors, b0 is always

positive, implying that αs (µ) decreases with increasing renormalization scale. As

the interaction energy becomes very large (µ→∞), the QCD coupling goes to zero,

implying that at very small distances, quarks and gluons act as free particles (asymp-

totic freedom). Furthermore, if the interaction distance becomes large (µ→ 0), αs

becomes very large and makes any perturbation expansion meaningless, so an infi-

nite amount of energy would be required to separate bound quarks and gluons. The

requirement that quarks and gluons only exist in colorless bound states (hadrons) is

termed infrared slavery, or confinement.
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To calculate NLO dependence of the coupling on renormalization scale, terms of

O (α3

s
(µ)) in 2.4 are included. The NLO solution for α

s
becomes, in terms of the

QCD mass scale

α
s
(µ) =

1

b0 ln
(
µ2

Λ2

)

1− b1

b
2
0

ln

(
ln

(
µ
2

Λ2

))

ln

(
µ2

Λ2

)

 . (2.10)

The choice of Λ still depends on the choice of the renormalization procedure used. All

calculations contained herein use the “modified minimal subtraction”
(
MS

)
scheme

[16] to define Λ to NLO.

2.2 The Parton-Parton Cross Section

The cross section expression given in 2.1 includes the partonic cross section, dσ̂ij. The

partonic cross section represents the cross section for the process ij → QQX, where

i and j represent the interacting quarks or gluons, Q represents the heavy quark, and

X represents anything else produced in the interaction. To obtain a next-to-leading

order b-quark cross section, the partonic cross section must be calculated at LO and

NLO.

2.2.1 Leading Order Contributions

Leading order, O (α2

s
), production mechanisms for heavy quarks include gluon-gluon

fusion and quark-antiquark annihilation:

g (p1) + g (p2) → Q (k3) +Q (k4)

q (p1) + q (p2) → Q (k3) +Q (k4) (2.11)
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Process
∑∣∣Mij

∣∣2

gg → QQ
2Tf

DA
α2

s

(
Cf

τ1τ2
− CA

)(
τ
2

1
+ τ

2

2
+ ρ−

ρ
2

4τ1τ2

)

qq→ QQ
C
2

f

DA
α2

s (2τ
2

1
+ 2τ2

2
+ ρ)

Table 2.1: LO matrix elements. For SU(3)c, CA = 3, Cf = 4/3, DA = 8, and
Tf = 1/2.

The Feynman diagrams for these two processes are shown in Figure 2.2. Each vertex

carries an associated coupling αs. The matrix elements Mij for the processes shown

in Figure 2.2 have been calculated [17] and may be used to calculate cross sections.

In Table 2.1, the matrix elements are averaged (summed) over initial (final) colors

and spins, are calculated using the following ratios of scalar products:

τ 1 =
2p1 · k3

ŝ
=

m2

Q −

̂t

ŝ
, τ 2 =

2p1 · k4

ŝ
=

m2

Q − û

ŝ
, ρ =

4m2

Q

ŝ
, (2.12)

where ŝ, ̂t, and û are the Mandalstam variables describing the parton scattering. The

partonic cross section for heavy quark production is given by

dσ̂ij

dyd2kT

=
1

ŝ2
δ (1 − τ 1 − τ2)

∑∣∣Mij

∣∣2 (2.13)

where y is the rapidity of the heavy quark in the center of mass system, and kT is

the heavy quark transverse momentum. For top and bottom quarks, this calculation

should be reliable, as their masses are large enough for the perturbation expansion in

αs to be reliable.

2.2.2 Higher Order Corrections

Higher order corrections to the LO prediction for heavy quark pair production in

QCD are expected to be suppressed by an additional factor of αs, a suppression on

the order of 10-20%. Heavy quark pair production, however, is an exception to this
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Figure 2.2: Leading order production mechanisms for heavy quarks: gluon fusion
(top) and quark antiquark annihilation (bottom).

general QCD rule. The cross section for gg → gg is roughly a factor of a hundred

larger than the cross section for gg → QQ [18]. The cross section referred to here

is the partonic cross section convoluted with the structure functions (see Section

2.3), evaluated at low x. Even with the additional suppression of αs, the production

mechanism gg → gg∗→ gQQ (Figure 2.3) still contributes significantly to the overall

production cross section. Note that the factor of a hundred is only valid for on-mass-

shell gluons; the virtual gluon g∗ is off-mass-shell by an amount on the order of the

heavy quark mass, suppressing the virtual gluon diagram contribution.

Additional O (α3

s
) diagrams are shown in Figure 2.3. Calculation of the b-quark

cross section must include the processes

gg → QQg

qq → QQg

gq → QQg
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gq → QQg (2.14)

qq → QQ

gg → QQ.

These diagrams depict processes that can give very different event topologies from

those at leading order. Leading order processes produce heavy quarks back-to-back

in azimuth, while NLO processes can produce very collinear heavy quark pairs that

may no longer be back-to-back in phi. Figure 2.3 also depicts virtual diagrams whose

interference with their LO counterparts contribute terms on the order of O (α3

s
).

These diagrams are necessary to cancel infrared and collinear singularities in the real

emission diagrams [17].

2.3 Structure Functions

The remaining pieces of 2.1 to be evaluated before computing heavy quark production

cross sections are the structure functions, F 1

i
. The structure functions denote the

probability that parton i will be found with a given momentum in hadron 1. The

structure functions are evaluated at a mass scale, called the factorization scale, on the

order of the momentum transfer of the hard scatter. The factorization scale is usually

set equal to the renormalization scale at which αs was calculated for convenience.

The structure functions are functions of x and Q2, where x is the fraction of the

proton the parton carries, and Q2 is the momentum transfer. This analysis probes

the structure functions at low x, where the gluon contribution to the b-quark cross

section is significant at next-to-leading order.

The structure functions are generally parameterized at some scale µ
0
and evolved
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s
) diagrams contributing to NLO calculations include gluon splitting,

flavor creation and gluon emission. Also shown are terms of O(α4

s
) that interfere with

the LO diagrams.
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using the QCD mass scale Λ to some other scale µ at which experimental data are

available. Fits to the data at various scales allow calculation of the best parame-

terizations of the structure functions. The term parton distribution function is used

interchangeably with the term structure function.

2.4 Heavy Flavor Production Predictions at pp Colliders

After determining the strong coupling constant, the parton-parton cross section, and

the structure functions, an inclusive b-quark production cross section can be obtained.

The Nason, Dawson, and Ellis (NDE) predictions use an extension of theMS scheme

for factorization and renormalization [17]. The inclusive b-quark cross section employs

the following parameters in the calculation:

• The b-quark mass takes a value of 4.75 GeV/c2. To obtain the error bands, the

mass is allowed to vary in the range 4.5 GeV/c2 < mb < 5.0 GeV/c2.

• The renormalization and factorization scales are set equal and take on a value

µ
0
=
√
m2

b
+ p2

T
. The errors due to scale dependence, which are present in any

calculation to finite order in αs, are estimated by allowing µ to vary between

µ
0
/2 and 2µ

0
.

• The parameterΛ
MS

is taken to be 152 MeV and does not vary in this calculation.

• The parton distribution function used here, MRSR2, does not vary. This struc-

ture function is chosen for comparison because of the enhanced bottom produc-

tion predicted over MRSA’.
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The calculation performed in 2.1 can not be compared directly to data. In general,

experimental data are sensitive only to b-quarks above a given pT threshold (pmin
T

) and

within a selected rapidity region ([ymin, ymax]) determined by detector acceptances.

Specifically, the pmin
T

is determined from Monte Carlo to be the pT of the b-quark

so that 90% of the b → µX cross section lies above this value. To facilitate the

comparison between the theoretical calculation and experimental data, the prediction

is rewritten in the form

σ
(
pp→ bX;pb

T
> p

min

T
, |yb| < ymax

)
=

∫ ymax

−ymax

dyb

∫
∞

pmin
T

dpb
T

d2σ (pp→ bX)

dybdp
b

T

. (2.15)

The resulting NLO prediction for the inclusive b-quark production cross section for

√
s = 630 GeV and ymax = 1 is shown in Figure 2.4.
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Figure 2.4: The NLO QCD prediction for the inclusive bottom quark production
cross section. The prediction is generated using HVQJET, an implementation of the
MNR calculation.
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CHAPTER 3

MONTE CARLO SIMULATIONS

Monte Carlo event generators are invaluable tools for performing the complicated

analyses in high energy physics. Monte Carlo, so named for the gambling quarter in

Monaco, involves modeling various processes by using random numbers to generate

physical distributions. For data analyses that have limited statistics, Monte Carlo

(MC) provides a way to generate expected distributions for signal and background.

Monte Carlo is also used to used to generated theoretical distributions based on pre-

vious experiments; these distributions can then be compared to the data to determine

whether the theoretical predictions are correct.

This chapter serves to introduce the ������ Monte Carlo generator [19] and eluci-

date the various samples of Monte Carlo available for the analysis. Further tools that

simulate the detector response to Monte Carlo events will also be explored. Future

chapters will detail the manner in which the Monte Carlo events are employed.

3.1 The ISAJET Monte Carlo Generator

The Monte Carlo used in this analysis is generated using the ������ event generator.

������ produces events by first generating a primary 2 → 2 hard scatter according

to appropriate QCD cross sections. For this analysis, the ������ option was used.

The ������ option forces ������ to generate all O (α2

s
) QCD processes. The cross

sections from the hard scatter are then convolved with the proton structure functions:

σ = σ0 · F
(
x1, Q

2
)

· F
(
x2, Q

2
)
, (3.1)
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where σ0 is the parton-parton cross section calculated from perturbative QCD, the

parton structure functions are denoted F (xi, Q
2), in which xi represent the fraction

of the proton momentum that parton i carries, and Q2 represents the momentum

transfer scale.

QCD radiative corrections are then added to the initial and final states. Initial

and final state particles are permitted to radiate gluons that can decay into qq pairs.

This process is governed by the Altarelli-Parisi splitting functions that describe the

probability that a given particle will split. The Altarelli-Parisi splitting functions are

modeled using the branching approximations of Fox and Wolfram [21].

To avoid infrared and collinear singularities, each parton in the cascade is re-

quired to have an energy greater than some cutoff energy to be permitted to continue

emitting quarks and gluons. Gluon radiations below this scale are assumed to be

non-perturbative and are handled by the hadronization model. The default ������

cutoff of 6 GeV does not affect bottom quark production, because the threshold for

producing a bb pair is twice the mass of the bottom quark, or 10 GeV. The cutoff

will, however, affect charm production from gluon splitting and soft final state gluon

radiation.

Next, partons are fragmented into hadrons. Any hadrons with lifetimes less than

10
−12 seconds are decayed. Finally, ������ assumes that the remainder of the event

energy enters in the form of minimum bias beam jets and adds them in.

3.1.1 Heavy Flavor Production Mechanisms

Within ������, heavy flavor quarks can be produced via three mechanisms: flavor

creation (FC), flavor excitation (FE), and gluon splitting (GS). All 2 → 2 processes
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resulting in the production of only a QQ pair are examples of flavor creation. FC

processes represent the leading order production mechanism for heavy quarks.

Collisions in which a gluon splits into a heavy quark pair, and one of the heavy

quarks scatters off another parton, are referred to as flavor excitation. Because an

initial gluon splits prior to the hard scatter, an additional factor of α
s
makes flavor

excitation a higher order process.

In addition, heavy quarks are produced through gluon splitting. In GS, no heavy

quarks are involved in the hard scatter. Instead, a final state gluon splits into a heavy

quark pair. Similar to FE, the process of gluon splitting requires an additional QCD

vertex, making gluon splitting a higher order process.

3.1.2 Hadronization of Heavy Quarks

After generating the hard scatter, ������ must form hadrons from the final state

partons. This process, called hadronization, is modeled by the independent fragmen-

tation ansatz originally proposed by Field and Feynman [22]. The final state quark,

denoted q, creates a new q
′q′ pair in its color field. These new pairs are required

to be created in the ratio u : d : s = 0.43 : 0.43 : 0.14, which reflects the strange

quark’s larger mass and resulting lower production probability. A new meson
(
qq

′
)

is formed with a fraction z of the original quark’s momentum, with an averaged pT

of 0.35 GeV/c. The leftover quark in the process
(
q

′
)
continues to fragment in the

same fashion with a momentum of (1− z) p, where p is the original momentum of the

heavy quark.
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The momentum fraction z is defined as

Ehad + phadL

Eq + pq
, (3.2)

where phadL is the momentum of the hadron in the direction of q. ������ generates

these fractions according to distributions from the Peterson model [23]. For heavy

quarks, the fragmentation function takes the form

f(z) =
z (1− z)2

[
(1− z)2 + εz

]2 . (3.3)

The parameter ε is expected to scale with the mass of the heavy quark and is defined

as

εq =
kq

m2
q

, (3.4)

where kb = 0.5 is the default value supplied by ������.

Baryons are also produced by ������. These hadrons are produced by generating

di-quark pairs with a probability of 0.1 instead of a single quark.

3.1.3 Decay of B Hadrons

Once the heavy quark has been hadronized, it is forced to decay. ������ uses the

spectator V −A model to decay hadrons. The light quark in the meson is considered

to be only a spectator in the decay of the heavy quark, so the heavy quark is allowed

to decay as a free particle (Figure 3.1). The decay occurs via the normal V −A weak

current. This model of semileptonic decay neglects gluon radiation, binding effects,

and other perturbative and nonperturbative QCD corrections, but for the large mass

of the bottom quark, these effects are expected to be negligible.

Although B mesons decay directly via the weak current to leptons, they can also

produce leptons via a secondary decay. The B meson decays weakly to a D meson,
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Figure 3.1: Spectator decay of a B meson. The bottom quark decays as a free particle.

and the charm quark in the D can decay semileptonically through the same weak

mechanism. This decay chain is sometimes referred to as sequential decay of the B

to leptons. The spectator model is expected to be less accurate for sequential decays,

however, due to the lighter charm quark mass.

LEP measurements [24] have determined the inclusive semileptonic branching ra-

tio for B mesons into muons to be

BR
(
B → µ±νµX

)
= 11.0 ± 0.3± 0.4%. (3.5)

������ uses 12% for this branching ratio, so to ensure that its predictions are accurate,

a correction factor of
(
11

12

)
is applied to the cross section per event for every event in

which a bottom quark decays directly to a muon. Because the branching ratios used

by ������ agree with experimental measurements, no corrections are made for events

in which a muon originates from the decay of a charm quark.

3.1.4 ISAJET Hard Scatter pT

The Monte Carlo used in this analysis was generated with the ������ event generator

package. At the heart of every event generated is a 2 → 2 hard scatter. The user
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defines the transverse momenta of the hard scatters to be generated. In general, the

momenta of the hard scatters are chosen to be between 4 and 80 GeV/c (see, for

example, Table 3.1), because quarks with a transverse momentum less than 4 GeV/c

do not generally produce muons that will pass through the DØ iron toroid.

Because the bottom quark production cross section falls steeply with increasing

transverse momentum, this simulation of physics distributions is time-consuming and

CPU intensive. To obtain large statistics in regions where the cross section for pro-

duction is small, one can generate Monte Carlo in bins of hard scatter transverse

momentum. The cross section per event, or ������ weight, is simply adjusted to

result in the complete cross section when all bins are summed.

The Monte Carlo used for this analysis has also been generated with the lower

threshold for hard scatter transverse momentum set somewhat higher than 4 GeV/c.

Because this analysis requires the presence of a 12 GeV jet, it was determined that

events generated at less than 10 GeV/c rarely satisfy the requirements placed on the

data sample (see, for example, Table 3.1).

3.1.5 ISAJET Version

Monte Carlo event generators are often updated to include new physics results. These

updates can include new branching fractions, new cross sections, and newly descovered

energy states for a particular particle. Each successive version of a generator must

be cross-checked with any Monte Carlo used in an analysis to ensure that new Monte

Carlo events are not needed.

Recently ������ was updated to version 7.37. The new version of ������ includes

new data from the CLEO collaboration. CLEO, with the largest collection of B
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meson decay data ever produced, has done a great deal of B meson spectroscopy

and published a plethora of results on various decay states. Version 7.37 of ������

includes the new CLEO decay table, whereas previous versions (e.g., isajet 7.13) did

not. The different versions must be compared to determine the magnitude of the

impact on this analysis.

In Chapter 6, ������ Monte Carlo is used to fix the ratio of bottom sequential

decay to direct bottom decay for purposes of background subtraction. In addition, the

background subtraction technique relies heavily on the Monte Carlo distributions of

the transverse momentum of the muon relative to its associated jet axis. In addition,

the fraction of muons originating from the decay of a bottom quark is compared to

the data and must also be cross-checked between versions.

������ ������ samples were generated using versions 7.13 and 7.37. Only events

containing a muon and a heavy quark were examined. The ratio of sequential decay to

direct bottom decay as a function of generated muon transverse momentum is shown

in Figure 3.2 for both versions. The transverse momentum of the muon relative to the

direction of the nearest heavy quark is plotted for both versions in Figure 3.3. The

fractions of muons originating from a bottom decay as a function of muon transverse

momentum are compared in Figure 3.4. All distributions exhibit good agreement

within errors between versions.

3.1.6 HVQJET

For the b-produced muon cross section and the inclusive bottom quark production

cross section, the results are compared to theoretical predictions. The theoretical

predictions used are obtained using 	
����, a Monte Carlo simulation developed
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Figure 3.2: Comparison of the sequential decay to direct bottom decay ratios between
������ V7.13 and V7.37.

at DØ by Marc Baarmand, which provides a direct calculation of the NLO MNR

prediction [15]. 	
���� uses the MNR parton level generator and a modified version

of ������ for hadronization, particle decays, and underlying event modeling.

In 	
����, the MNR prediction is realized by combining events with large neg-

ative weights with events with positive weights and similar topologies, resulting in

events that have positive weights only. The transverse momentum spectrum pro-

duced by 	
���� was cross-checked against that produced by the MNR calculation,

indicating that this negative weight cancellation process does not significantly affect

the cross section [25].
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Figure 3.3: Comparison of the distributions of muon transverse momentum relative
to the nearest heavy quark between ������ V7.13 and V7.37.

3.2 Monte Carlo Simulation of Data

It is not sufficient to merely simulate physics events with Monte Carlo. The data are

collected with the DØ detector (Chapter 4), which affects the distributions observed.

Fortunately, it is possible to pass the Monte Carlo events through a full detector

simulation so they look similar to the data.

Once an event sample has been generated, it is passed through DØ����. ����

is a multi-purpose tool used to simulate the passage of particles through matter

developed at CERN. Effects modeled in ���� include multiple Coulomb scattering,

full electromagnetic and hadronic showering, bremsstrahlung, and particle decays.

DØ���� refers to a customized version of ���� that includes a full physical

description of the DØ detector. DØ���� then uses the particle tracks to produce
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Figure 3.4: Comparison of the fraction of muons originating from bottom quark decays
as a function of muon transverse momentum between ������ V7.13 and V7.37.

simulated hits in the detector, analogous to raw data.

Unfortunately, DØ���� does not properly simulate all inefficiencies in the muon

system. For example, it does not include alignment uncertainties or drift time resolu-

tions. The true muon momentum resolution is not as good as the assumed resolution

in DØ����. More information about resolutions can be found in Chapter 7.

The ������� package was created to simulate the smearing of muon momentum.

Having a separate package allows one set of Monte Carlo to be processed with several

versions of �������, resulting in Monte Carlo that simulates data at various periods

during the running of the experiment. In Run 1, due to the variation of chamber

efficiencies (described in more detail in Section 5.3.2), the package was developed for

two distinct running periods: prior to zapping the muon tracking chambers and after
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zapping the chambers.

In addition to correctly simulated detector hits, proper simulation of the data

requires a simulation of the trigger system. ������� is a package designed to simulate

the full DØ trigger system, described in detail in Section 4.3. Full simulation of the

Level 1 and Level 1.5 hardware triggers, as well as the Level 2 software trigger system,

is included.

3.2.1 Decay Background Monte Carlo

The charged pion and kaon branching fraction for decay into muons is large, so π/K

in-flight decay is expected to contribute significantly to the muon sample. The con-

tribution is somewhat reduced because the decay lengths of the particles are boosted

in the lab frame, so the fraction of charged particles decaying in the central tracker

is small. In addition, the average transverse momentum for muons from these decays

is less than 1 GeV, so only a small fraction are expected to traverse the iron toroid.

To speed production of pion and kaon decay Monte Carlo, a decay package was

developed by the Arizona group at DØ [20]. A sample of ������ ������ events was

generated, and each event was input into the decay simulator. The decay package

determined the list of possible candidates (π±,K±,K0

L) for which p
π/K
T > 3.0 GeV/c

and
∣∣ηπ/K∣∣ < 0.9. A particle from this list was chosen at random and forced to decay

into a muon. The probability that this type of decay occurs is expressed as

P =

(
1− e

−

RCD
cτ

·

mπ/K
Eπ/K

)
·BR (π/K → µ) , (3.6)

where RCD is the radius of the central tracking volume, cτ is the particle decay

length, and BR (π/K → µ) is the appropriate branching fraction to muons. The
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decay modes included in this package are π+ → µ+νµ, K
+
→ µ+νµ, K

+
→ π0µ+νµ,

andKL → π±µ∓νµ, as well as the corresponding charge conjugate modes. The weight

assigned to each event is given by the product of the original cross sectional weight

of the single muon event with the probability for producing a muon from a pion or

kaon decay in the event.

3.3 Various Monte Carlo Samples

In addition to the data ntuples, several samples of Monte Carlo are available for this

analysis. For completeness and ease of reference, the available Monte Carlo samples

are listed in Table 3.1. The table lists the name of the Monte Carlo set, the ������

version used to generate ������ events, the bins for the transverse momenta of the

hard scatter, and any cuts applied to the generation process. After ����ing, all

raw events were smeared with MU_SMEAR_E95XX_R8892.RCP, obtained from

the low and high energy data of Run 1C. The DØ trigger system was simulated using

������� 7.17 in conjunction with L301.GLB-TRIGLIST. Finally, the reconstruction

of the raw information was performed using DØ���� 12.21.
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MC Set ������ Generation Cuts
version Bins (GeV)

IND set 1 7.13 9 bins (6-10, 10-15, p
µ

T
> 3 GeV/c, |ηµ| ≤ 1.0

15-20, 20-30, 30-40, 40-50,
50-60, 60-70, 70-80)

IND set 2 7.13 1 bin (8-80) pµ
T
> 3 GeV/c, |ηµ| ≤ 1.0

IND π/K 7.13 4 bins (5-10, pµ
T
> 3 GeV/c, |ηµ| ≤ 1.0

10-20, 20-40, 40-80)
RIO set 1 7.22 1 bin (20-100) pµ

T
> 3 GeV/c, |ηµ| ≤ 1.0

φµ < 220
◦ or φµ > 320

◦

RIO set 2 7.22 1 bin (20-100) p
µ

T
> 3 GeV/c, |ηµ| ≤ 1.0

50
◦ < φµ < 130

◦

RIO set 3 7.22 1 bin (20-100) p
µ

T
> 3 GeV/c, |ηµ| ≤ 1.0

30
◦ < φµ < 150

◦

RIO set 4 7.22 1 bin (10-20) p
µ

T
> 3 GeV/c, |ηµ| ≤ 1.0
30

◦ < φµ < 150
◦

FNAL π/K 7.22 5 bins (1-3, 3-6, pµ
T
> 3 GeV/c, |ηµ| ≤ 1.0

6-10, 10-20, 20-100) 30
◦ < φµ < 150

◦

Table 3.1: The Monte Carlo available for this analysis.
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CHAPTER 4

THE DØ EXPERIMENT

Fermi National Accelerator Laboratory (FNAL) is home to the world’s highest energy

particle accelerator, the Tevatron. The Tevatron operates in two different modes. In

Fixed Target mode, the Tevatron delivers 900 GeV particle beams to fixed target

experiments such as KTEV or NUTEV. In Collider Mode, the Tevatron provides

counter-rotating beams of protons (p) and anti-protons (p̄) with a center of momentum

(CM) energy
√
s = 1.8 TeV.

The DØ collaboration studies the high pT physics and mass states produced by

these energetic beams. With the DØ detector, the collaboration has produced a great

deal of new and exciting physics, including the simultaneous discovery of the top quark

in 1995 by the DØ and CDF (Collider Detector at Fermilab) collaborations [11][12].

In addition, DØ has made precision measurements of the W boson mass [26], led the

search for new particles, and constrained perturbative QCD in studies of hadronic

jets and heavy quark production.

Following the 1994-1995 run of the Tevatron (termed Run 1B), the center of

momentum energy was reduced to study the energy dependence of many physics

processes. The energy,
√
s = 630 GeV, was chosen to match the energy used in the

UA1 experiment at CERN. The run of the Tevatron corresponding to the 630 GeV

CM energy is termed the Low Energy Run (LNR).
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4.1 The Fermilab Tevatron

Creating and colliding stable particle beams of such energies is a multi-stage task. The

Tevatron itself is the last of seven components used to create the proton and antipro-

ton beams: the Cockroft-Walton pre-accelerator, the Linac, the Booster Synchrotron,

the Main Ring, the Debuncher, the Accumulator, and finally, the Tevatron. Figure

4.1 depicts the general layout of the machines used in the acceleration process. The

interested reader may obtain additional information about the accelerators elsewhere

[27].

4.1.1 The Cockroft-Walton Pre-accelerator

The proton and antiproton beams begin their lives in a fairly humble tank of hydrogen

gas. A magnetron surface-plasma source ionizes the hydrogen, producing a pulsed

18 keV H
− beam. The H− ions are injected into a commercial Cockroft-Walton

accelerator that boosts the energy of the ions to 750 keV using a cascading voltage

multiplier.

4.1.2 The Linac

Transport lines direct the ion beam from the Cockroft-Walton into a two-stage linear

accelerator (linac). A 79 m Alvarez drift-tube accelerator boosts the energy of the

ions to 116 MeV. Quadrupole magnets focus the beam throughout acceleration. A

side-coupled linear accelerator continues boosting the energy to 400 MeV. The beam

is directed at a carbon foil target that strips the electrons from the ionized hydrogen,

producing a pure proton beam.
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Figure 4.1: An overview of the system of accelerators used to accelerate protons and
antiprotons at Fermilab. The picture is not drawn to scale: while the Main Ring and
the Tevatron have the same diameter, they are shown offset here for clarity.
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4.1.3 The Booster Synchrotron

The proton beam is injected into the Booster accelerator. The Booster is a syn-

chrotron with a diameter of 151 m that serves as an injector for the main ring.

Ninety-six dual function dipole/quadrupole magnets keep the beam focused and in a

closed orbit. The frequency of RF electromagnetic fields is raised synchronously with

the magnetic field strength (necessary due to relativistic effects). The protons are

accelerated to an energy of 8 GeV and injected into the Main Ring.

4.1.4 The Main Ring Accelerator

The Main Ring synchrotron is similar to the Booster; however, the Main Ring is

much larger, with a diameter of 2 km. The Main Ring steers and focuses the proton

beam with one hundred copper coil magnets. Before Tevatron injection, the Main

Ring provides the antiproton source with a beam of protons. Proton bunches with an

energy of 120 GeV are directed onto a nickel/copper target. The antiprotons produced

in the collisions are focused with a cylindrical lithium lens. Antiprotons with energies

near 8 GeV are selected to match the energy of the proton beam injected into the Main

Ring by the Booster. After enough antiprotons are accumulated by the p Debuncher

and Accumulator Complex, the Main Ring accelerates the proton and antiproton

beams to 150 GeV and injects the beams into the Tevatron.

4.1.5 The p Debuncher and Accumulator Complex

Initially the antiprotons are incoherent, exhibiting a large variance in momentum.

Using stochastic cooling [28], the Debuncher reduces the variations in particle mo-
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mentum about the 8 GeV mean. After cooling, approximately 2 × 10
10 antiprotons

are sent to the Accumulator, which further cools the antiprotons and stores them

until 2 × 10
11 antiprotons have accumulated. Typically, the accumulation proccess

requires four to six hours. One “store” of protons and antiprotons lasts from 12 to

14 hours, giving the Main Ring time to accumulate enough antiprotons for another

store.

4.1.6 The Tevatron Ring

After enough antiprotons accumulate, the Main Ring injects six bunches of protons

and six bunches of antiprotons into the Tevatron, which is suspended 2 feet below

the Main Ring. A typical proton bunch contains roughly 150×10
9 particles, while an

antiproton bunch typically contains 50×10
9 particles. The Tevatron employs roughly

one hundred superconducting magnets, cooled to 4.6 K by a liquid helium cooling

system, to simultaneously focus and direct the beams. The Tevatron accelerates the

bunches to 315 GeV, resulting in collisions with a CM energy
√
s = 630 GeV and a

bunch crossing time of about 3.5 µs.

Once the beams reach the target energy, they are forced to collide in the cen-

ter of the DØ and CDF detectors. Special focusing magnets, called the low beta

quadrupoles, reduce the cross sectional area of each beam to approximately 1 mm2.

The number of crossings each second through unit cross section is referred to

as the instantaneous luminosity. Throughout Run 1B, for example, the Tevatron

delivered a variety of instantaneous luminosities, ranging from 1 × 10
30
s
−1
cm

−2 to
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Running Period Dates Delivered Lum. Recorded Lum.

1A 1992-1993 23.0 pb−1 15 pb−1

1B 1994-1995 121.5 pb−1 87.6 pb−1

1C 1995-1996 16.9 pb−1 12.7 pb−1

Table 4.1: The total integrated luminosity from the three running periods during Run

1. These numbers are estimated to be correct to within 5%.

25 × 10
30
s
−1
cm

−2. Integrated luminosity is defined as

L =

∑

i

Li∆ti, (4.1)

where Li represents a constant “instantaneous” luminosity over some time interval

∆ti. The sum runs over all time intervals of interest, making it possible to discuss,

for example, the integrated luminosity of a given run range. Figure 4.2 depicts the

integrated luminosity for all of Run 1. The integrated luminosities in the Table

are expressed in barns, with the relation 1 barn = 10−28 m2. The plot shows both

delivered and accumulated luminosities, which are also given by partial run in Table

4.1. This thesis uses data from a low energy run taken just prior to Run 1C.

4.2 The DØ Detector - From the Inside Out

The DØ detector was intended to be a general purpose detector, useful for studying

the high pT and large mass states produced in the very high energy collisions of the

Tevatron. It was designed with the following goals in mind:

• Excellent lepton identification

• Good energy resolution for parton jets with a very high transverse energy (ET)

• Good measurement of missing ET (� E
T
), which indicates the presence of neu-

trinos and other non-interacting particles
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Figure 4.2: The luminosity delivered by the Tevatron and recorded by DØ as a
function of date.
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For example, the top quark andW boson have appreciable branching fractions for

leptonic channels, while accompanying QCD backgrounds have much smaller branch-

ing fractions. The detector was required to have a nondestructive tracking and vertex

detection system, a hermetic calorimeter that would detect leptons, hadrons, and neu-

trinos (via measurement of � E
T
), and a muon system to detect leptons that escape

the calorimeter. The resulting detector has the following features:

• A stable, hermetic, finely segmented, thick, and radiation hard liquid argon

calorimeter

• A muon detection apparatus that includes a thick iron toroid to provide suffi-

cient momentum resolution and protection from hadronic punchthrough

• A compact non-magnetic tracking volume with adequate spatial resolution and

emphasis on electron background suppression

Figure 4.3 shows a cutaway view of the DØ detector. This simplified rendering

depicts all three primary subsystems: the central detector, the calorimeter, and the

muon system. Each primary detector subsystem and its components is described

below. For reference beyond this thesis, an interested reader may consult [29]. Vari-

ous coordinate systems are used to describe physics objects and detector component

placement; a detailed description of the coordinate systems used at DØ is presented

in Appendix A.

4.2.1 The Central Detector (CD)

The central detector consists of four subsystems, all of which provide non-destructive

detection of charged particles: the Vertex Detector (VTX), the Transition Radiation
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D0 Detector

Muon Chambers

Calorimeters Tracking Chambers

Figure 4.3: A cutaway view of the DØ detector depicting the three major detector
components.



63

ΘΦ Central Drift
Chamber

Vertex Drift
Chamber

Transition
Radiation
Detector

Forward Drift
Chamber

Figure 4.4: Detail of the central detector showing the VTX, CDC, TRD, and FDC.

Detector (TRD), the Central Drift Chambers (CDC), and the Forward Drift Cham-

bers (FDC). The VTX, TRD, and CDC form coaxial cylinders around the beam pipe,

covering a region out to |η| < 1.2. The FDC are oriented perpendicular to the beam

pipe and provide coverage for the region 1.4 < |η| < 3.1. Figure 4.4 depicts the design

of the CD.

By design, the central detector allows reconstruction of charged particle trajec-

tories originating from the interaction vertex. The information is used to locate the

event vertex and find electromagnetic showers (either e− or γ). The main design

requirements were to produce an inner tracking system with good two-track resolving

power, high efficiency, and ionization energy measurement capabilities.

A particle passing through a gas interacts electromagnetically with atomic elec-

trons near the path of the particle. The interactions create electron-ion pairs, the
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number of which depends on the energy of the particle and the type of gas used.

Typically, 100 pairs/cm will be formed. An electric field causes the particles to drift

towards the anode of the drift chamber, repeatedly colliding with gas molecules. If

the applied field is strong, electrons kick other electrons out of gas molecules, and

these loose electrons also drift toward the electrode. This exponential avalanche of

electrons eventually materializes as a current on the anode proportional to the original

number of electrons created.

Because an electron only initiates an avalanche when close to the anode, an elec-

tron moves at approximately constant speed through the rest of the gas. Measurement

of the elapsed time between electron creation and collection can be used to determine

the distance of the original source particle from the anode. This type of measurement

is characteristic of a drift chamber. The VTX, CDC, and FDC are all drift chambers.

The TRD detects transition radiation, and its operation is described in section 4.2.1.

The Vertex Detector (VTX)

For |η| < 2, the products of a high energy pp collision must first pass through the VTX

[30], which lies directly outside the beam pipe. The Vertex Detector was designed

to accurately determine the position of the event vertex. The VTX provides vertex

resolution of about 1.5 cm along the z-axis. It also provides position resolution of

approximately 50-60 µm for charged particle tracks.

The vertex chamber consists of three mechanically independent concentric layers

of cells. The active region extends from an inner radius of 3.7 cm to an outer radius of

16.2 cm. The active length of the layer closest to the beam pipe is 97 cm, while each

successive layer grows larger by approximately 10 cm. The innermost layer consists
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Figure 4.5: End view of the VTX showing the positions of the sense, field, and grid
wires.

of 16 cells in azimuth, while the outer two each contain 32 cells. The walls between

the cells are made of low density carbon fiber to minimize photon production of e−e+

pairs. Each cell contains eight sense wires, made of 25 µmNiCoTin [31], that measure

the r − φ coordinate (Figure 4.5). Adjacent sense wires are staggered by 100 µm to

resolve left-right ambiguities. The three layers of cells are offset in φ to aid pattern

recognition.

The active medium, a CO2-ethane gas mixture (95%:5%) with a small amount of

H2O added [32], provides good spatial resolution. The average drift velocity, about

7.3 µm/ns, results in a maximum drift time of 2.2 µs, comfortably within the collider

bunch-crossing time of 3.5 µs.
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Figure 4.6: This cross sectional view of one section of the transition radiation detector
shows the radiator and the detector in detail, as well as the positions of the various
wires.

The Transition Radiation Detector (TRD)

Wrapped around the VTX, the Transition Radiation Detector provides electron iden-

tification independent of the DØ calorimeter. The TRD consists of three independent

sections, each containing a radiator and an X-ray detector. A cross sectional view of

the TRD is shown in Figure 4.6.

When a very relativistic particle passes between media with different dielectric

constants, a dipole formed by the real charge and an image charge on the opposite side

of the interface flips direction, producing transition radiation X-rays [33]. The energy

of the X-rays emitted by a specific particle with a given momentum, is determined by

the thickness of the radiator foils and the gaps between them. The three DØ TRD

units each contain a radiator with 393 polypropylene foils, each 18 µm thick, in a
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volume filled with N2. The gap between foils is 150 µm. An electron passes through

alternating layers of polypropylene and nitrogen, resulting in an X-ray spectrum that

peaks at 8 keV and is mostly contained below 30 keV [34].

Immediately behind the radiator, proportional wire chambers (PWC) detect the

X-rays. The X-rays convert in the first stage of the PWC, and the resulting charge

drifts radially outward to the sense cells, where avalanche ionization occurs as de-

scribed above.

Between the radiator and the detector lie two 23 µmmylar windows. Dry CO2 gas

flows between the windows to prevent the nitrogen in the radiator from leaking into

the detector volume. The detector volume is filled with a gas mixture of Xe, CH4, and

C2H6 (91%:7%:2%), an efficient X-ray absorber because xenon has a large Z (Z=54)

[35]. The outer mylar window is aluminized to serve as a high voltage cathode in the

detection stage. The 15 mm conversion stage and the 8 mm amplification stage are

separated by a grid of 70 µm gold-plated tungsten wires. Helical copper strips serve

as the outer cathode of the amplification stage and are also used to measure the z

coordinate of the pp interaction. The anodes are 30 µm gold-plated tungsten wires

separated by 100 µm gold-plated copper/beryllium potential wires. Each TRD has

256 anode readout channels.

The Central Drift Chambers (CDC)

Located just outside the TRD and just inside the central calorimeter, the CDC (Figure

4.7) provides coverage for tracks at large angles. The active volume is a cylindrical

shell 184 cm long, with an inner radius of 49.5 cm and an outer radius of 74.5 cm. Four

coaxial rings of 32 azimuthal cells, each containing seven 30 µm gold-plated tungsten
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Figure 4.7: Detail of the central drift chamber.

sense wires, comprise the CDC. Within the cell, adjacent wires are staggered in φ by

200 µm to resolve left-right ambiguities. Two delay lines allow a determination of the

z-coordinate of the track by measuring the difference of arrival times. The gas used

in the CDC is an Ar, CH4, and CO2 mixture (92.5%:4%:3%) with 0.5% H2O.

Forward Drift Chambers (FDC)

In the forward region of the CD, the forward drift chambers [36][37] (Figure 4.8)

provide coverage for charged particles down to about θ = 5◦ with respect to the beam

axis. As depicted in Figure 4.4, the FDC’s are located at the end of the CDC, TRD,

and VTX and extend to the inner walls of the end calorimeter. The active region of

the FDC extends out to a radius of 61 cm.

The two FDC’s are made up of three modules each: one Φ module sandwiched

between two Θ modules. The Φ module measures the φ coordinate with sense wires
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Figure 4.8: This depiction of the forward drift chambers shows the azimuthal offset
between the two Θ layers as well as the placement of the six rectangular cells.

oriented perpendicular to the beam pipe, while the two Θ modules measure the θ

coordinate. The Φ module consists of a single chamber containing 36 sections that

cover the full azimuth. Each section has 16 anode wires in z. The Θ modules are

divided into independent quadrants, each containing 6 rectangular cells. Each cell

contains eight anode wires directed in z. The sense wires in the three inner cells lie

at one edge, forcing the electrons to move in only one direction thereby removing the

left-right ambiguity. Each Θ module has one delay line to give a local measurement

of the orthogonal coordinate. The two Θ modules are also rotated in φ by 45◦ with

respect to each other. In all modules, adjacent anode wires are staggered by 200 µm

to resolve ambiguities. The FDC’s use the same gas mixture as the CDC’s.



70

4.2.2 The DØ Calorimeter

The DØ experiment relies on the calorimeter for measurements of electrons, photons,

and jets. In addition, it serves to identify muons as minimum ionizing particles (MIPs)

with a characteristic energy deposition of approximately 2 GeV.

The DØ calorimeter (Figure 4.9) acts as a “sampling” calorimeter: only a portion

of the particle’s energy is measured by the active medium as the particle traverses the

volume of the calorimeter. While each individual calorimeter component is described

below, all components rely on the same basic principle: particles traverse alternating

layers of a dense absorbing material and an active medium, causing a shower of

particles, increasing particle multiplicity until all the energy is dissipated and sampled

by the active medium. The DØ calorimeter is designed to detect both electromagnetic

and hadronic showers.

The calorimeter is divided into three pieces: the central calorimeter (CC), and

the two end calorimeters (north EC and south EC). The CC covers a pseudorapidity

region |η| ≤ 1, while the EC extend the coverage to |η| ≈ 4. Both the central and end

calorimeters contain three distinct detection systems: the electromagnetic calorimeter

with relatively thin uranium absorber plates, the fine hadronic calorimeter with thick

uranium absorber plates, and a coarse hadronic calorimeter with either thick copper

or stainless steel absorber plates. Each calorimeter subsystem employs liquid argon

(LAr) as the active medium.

Electromagnetic showers arise when electrons pass through a dense absorbing

medium with an energy greater than a material-dependent critical energy (∼ 100

MeV for uranium). The energetic electrons lose energy almost entirely through
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Figure 4.9: Cutaway view of the calorimeter showing the various layers in both the
central and end regions.
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bremsstrahlung. Bremsstrahlung (literally “braking radiation”) describes the process

by which a charged particle interacts with the Coulomb field around a nucleus and

emits an energetic photon. This high energy photon, which typically carries a signifi-

cant fraction of the electron’s energy, interacts primarily by pair production, resulting

in an e−e+ pair. These electrons and positrons can also bremsstrahlung, producing a

cascade of particles until all the particles have energies below the critical energy for

the absorbing material. Below the energy threshold, the energy loss is dominated by

ionization and excitation. Such a cascade is referred to as an electromagnetic shower.

Through fundamentally different physical processes, hadronic particles can also

initiate showers. Hadrons collide inelastically with atomic nuclei, producing sec-

ondary hadrons that themselves undergo inelastic collisions. Roughly half of the

initial hadronic energy observed as ionization of the LAr is associated with these

secondary hadrons, while the other half is lost to nuclear binding energies and neu-

tron kinetic energy. This hadronic cascade is called a hadronic shower. Like the

electromagnetic showers, the cascade continues until all the energy is dissipated by

ionization losses or nuclear processes.

Using the absorber plates and active medium described above, DØ is able to detect

and measure the energy of both types of showers. Each module in the calorimeter

contains a stack of interleaved absorber plates and signal boards. A 2.3 mm LAr-filled

gap separates the absorber plates and the signal boards. A signal board consists of

a copper pad sandwiched between two 0.5 mm sheets of G10, which is coated on the

LAr side with a resistive coating. A charged particle leaves a trail of ionization as it

passes through the liquid argon. The resistive coating, held at 2.0-2.5 kV with respect

to the grounded absorber plates, collects the ionization, and the signal is read out



73

from the copper pads.

The calorimeter cells are typically segmented such that the cell readout space is

0.1×0.1 in η−φ. Electromagnetic showers deposit the majority of their energy in the

third layer of the EM calorimeter, so the cells in that layer have an area of 0.05×0.05.

In addition, cells in the very forward region |η| > 3.2 are larger in both η and φ.

The Central Calorimeter (CC)

The CC provides coverage out to a pseudorapidity of 1.2 and consists of three con-

centric cylindrical shells. The innermost shell contains 32 electromagnetic modules

(CCEM), constructed to be thick enough to contain most electromagnetic showers.

Surrounding the CCEM is a shell of 16 fine hadronic modules (CCFH) designed to

measure the energy of hadronic showers. The outermost layer of the calorimeter con-

tains 16 coarse hadronic cells (CCCH) that measure any leakage from the CCFH and

reduce punchthrough into the muon system. Each layer is rotated azimuthally with

respect to the previous layer so that no projective rays cross more than one inter-

module gap. The radiation lengths, χ0, of the central calorimeter modules are 20.5,

96.0, and 32.9, for the CCEM, CCFH, and CCCH modules respectively.

The End Calorimeters (EC)

Each end calorimeter (ECN and ECS) is made up of four subdetectors and provides

a pseudorapidity coverage of 1.3 ≤ |η| ≤ 4.0. The electromagnetic (ECEM, shown in

Figure 4.10) and inner hadronic (ECIH) modules contain only one module. Outside

the ECEM and ECIH lie concentric rings of 16 middle (ECMH) and outer (ECOH)

hadronic modules. The various modules are rotated with respect to one another to
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Figure 4.10: View of the ECEM. The readout boards form disks with no azimuthal
cracks. The ICEM is of similar construction.

prevent particles from escaping the calorimeter.

Massless Gaps and the Intercryostat Detectors (ICD)

The region 0.8 ≤ |η| ≤ 1.4 contains uninstrumented space used by support structures,

module endplates, and the cryogenic walls of the central and end calorimeters. To

account for the energy not measured by the CC and EC in this gap, two scintillation

arrays, called intercryostat detectors, were mounted on the front surface of the end

calorimeters. Each ICD consists of 384 scintillators, segmented to match the η − φ
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area of the LAr cells in the calorimeter.

In addition to the ICD, single-cell structures were installed on the faces of the

CCFH, CCMH, and CCOH. These structures, called massless gap detectors, consist of

two signal boards surrounded by three LAr gaps. The gaps also exhibit a segmentation

∆η = ∆φ = .1 to match the ICD and the calorimeter cells. The massless gaps and

the ICD provide a good approximation to the LAr sampling of EM showers.

Calorimeter Performance

In a test beam setup, the calorimeter module response was studied using single elec-

trons and pions. The response for both electromagnetic and hadronic modules was

found to be linear within 0.5%. The resolution can be parametrized as

(σ
E

)2
= C2 +

S2

E
+
N2

E2
, (4.2)

where constants C, S, and N represent calibration errors, sampling fluctuations, and

noise contributions, respectively. For electrons, the measured constants are

C = 0.003± 0.002, S = 0.157 ± 0.005 GeV
1

2 , N ≈ 0.140 GeV, (4.3)

and for pions

C = 0.032 ± 0.004, S = 0.41 ± 0.04 GeV
1

2 , N ≈ 1.28 GeV. (4.4)

The fractional energy resolution of the DØ detector is roughly 15%/
√
E for electrons

and 50%/
√
E for pions [29].

4.2.3 The DØ Muon System

The outermost system of the DØ detector, the muon system, consists of five iron toroid

magnets, a system of proportional drift chambers (PDT’s), and scintillators. The
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muon system is divided into two subsystems: the wide angle muon system (WAMUS)

provides coverage of the pseudorapidity region |η| ≤ 2.5, while the small angle muon

system extends the coverage out to |η| ≤ 4.0, and is designed to operate in the high

rate environment near the beam pipe. In both WAMUS and SAMUS, three layers of

muon chambers (A, B, and C) provide a measurement of the muon momentum and

direction. the muon toroids are positioned between the A and B layers of the muon

system.

The Muon Toroids

The muon system employs five iron toroids. The toroids fulfill two functions in the

muon system. First, the sign and momentum of muon tracks are determined by the

bend angle of the muon track passing through the toroid. In addition, the longitudinal

depth of toroid plus the calorimeter reduces the hadronic punchthrough to the muon

chambers. Punchthrough refers to any hadronic particles produced by showers in the

calorimeter that produce hits in the muon system. The rate of punchthrough into

the muon system varies with pseudorapidity, but in the central region, the rate is less

than 2% of all tracks [38]. Because the punchthrough rate is kept to a minimum,

identifying muons within hadronic jets is relatively easy.

At η = 0, a muonmust have a momentum greater than 3 GeV/c to make it through

the iron. Because the amount of iron subtended by a muon track increases with

pseudorapidity, at larger η, a muon needs 5 GeV/c to traverse the 13-20 interaction

lengths of iron. The thickness in interaction lengths as a function of polar angle θ

is given in Figure 4.11. Additional problems with detector acceptance exist at the

bottom of the detector due to holes created by the calorimeter support structure.
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Figure 4.11: Thickness of the calorimeter and muon system in interaction lengths.

The central toroid is a square annulus 109 cm thick centered on the Tevatron

beam lines. The inner surface of the CF toroid is 317.5 cm from the beam. To permit

access to the inner portions of the detector, the central toroid was constructed in three

pieces. A middle bottom section is fixed to the detector platform. Two C-shaped

shells complete the central toroid. Twenty coils of ten turns each carry currents of 2.5

kA to create internal fields of 1.9 T. Fringe fields can exceed .01 T near the central

beam.

The two EF toroids use eight coils of eight turns carrying 2.5 kA to generate fields

of up to 2 T. The end toroids extend in z from 447 cm to 600 cm. The outer surfaces

are located at a perpendicular distance of 417 cm, and each EF toroid has a 183 cm

square hole centered on the beam line.

Within each inner hole of the EF toroid lies a separate SAMUS toroid. Two coils
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Region Construction Wire Material Gas (Drift Sp.) Resolution
WAMUS Rectangular Gold-plated Ar, CF4,CO2 ∼ 0.4 mm

aluminum Tungsten 90%:5%:5%
extrusion (50 µm ) (6.5 cm/µs)

SAMUS Cylindrical Gold-plated CF4,CH4 ∼ 350 µm
stainless Tungsten 90%:10%
steel tubes 50 µm (9.7 cm/µs)

Table 4.2: Technical details of the WAMUS and SAMUS wire chambers

of 25 turns carry a current of 1 kA, providing a field aligned with that in the EF

toroid. The outer surface of the SAMUS toroids is located 170 cm from the Tevatron

beams, and a 102 cm square hole is centered on the beam line.

The Wide Angle Muon System

The wide angle muon system (WAMUS) provides muon momentum and sign measure-

ment in the pseudorapidity region 0 ≤ |η| ≤ 2.5, corresponding to all of the CF and

most of the EF toroids. The WAMUS system is composed of 164 proportional drift

chambers (PDTs) arranged in three layers. The A layer lies inside the iron toroid,

while the B and C layers lie outside. Each layer is made up of several planes (called

decks) of PDTs: the A layer is composed of four decks of 10 cm drift chambers, while

the B and C layers are each made up of three decks. The technical details of the

WAMUS PDTs (Figure 4.12) are given in Table 4.2.

The coordinate ξ along the wire direction (non-bend view) is measured using a

combination of cathode pad signals and timing information from the anode wires.

Each cathode strip contains an inner and an outer pad ganged together separated by

a repetitive diamond pattern that repeats every 61 cm (Figure 4.13). The ratio of the

sum and difference of inner and outer signals provides a measure of the ξ coordinate,
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Figure 4.12: End view of the WAMUS PDTs depicting the arrangement of cells in
three and four deck layers as well as the placement of the cathode pads.
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Figure 4.13: WAMUS drift tube cathode pad structure.

modulo half the repeat length of the diamond pattern (≈ 30 cm). Ambiguities are

resolved using the time difference of the signal arriving along the anode at both ends

of the chamber. For a given chamber, the ξ resolution is approximately ±3 mm.

The Small Angle Muon System

The small angle muon system consists of two mirror image systems, north and south.

Three layers (A, B, and C) of doublet planes (two-deck planes) of cylindrical PDTs

provide coverage out to |η| ≤ 4.0. The A station, the closest to the center of the

detector, precedes the SAMUS toroid, while the B and C stations lie between the

SAMUS toroid and the beginning of the low-beta quadrupole for DØ insertion. The

three planes in each layer are oriented in x, y, and u (rotated 45◦ with respect to x or

y) (Figure 4.14). The technical details of the SAMUS PDTs can be found in Table

4.2.

Scintillators

Because cosmic ray produced muons comprise a large background to beam-produced

muons, muon scintillators [39] were installed on the outside of the C layer of the muon
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Figure 4.14: Diagram showing the orientation of the three layers in each plane of the
Small Angle Muon System (SAMUS).

system during Run 1B. The scintillators, 1/2” Bicron 404A scintillator [40] material,

measure 25 inches in width with lengths varying from 81.5” to 113” depending on the

PDT to which it is attached. The scintillators are mounted in a nested configuration

designed to reduce geometrical inefficiencies.

A muon passing through the scintillating material typically deposits 2 MeV of

energy, creating roughly 2 × 10
4 photons in the scintillator. The photon signal is

amplified by a factor of 107 by photomultiplier tubes. For the data used in this

analysis, the scintillators are active during a 50 ns time window centered on the beam

crossing time.

4.3 The DØ Trigger System

Writing to tape every event that occurs in the high luminosity environment provided

by the Tevatron is impossible. To select the most interesting physics events from a

sea of background events, DØ developed a sophisticated triggering system designed

to reduce the rate of the events written to tape. The trigger system has three levels of

increasing sophistication. Level Ø is a hardware based system relying on scintillators
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to indicate the presence of inelastic collisions. At a luminosity of 5 × 10
30 cm−2s−1,

the rate out of Level Ø is about 150 kHz. The Level 1 trigger, a hardware-based

trigger, mostly operates within the 3.5 µs bunch crossing time. Level 1 triggers

that require several beam crossings to form their trigger decisions are referred to as

Level 1.5 triggers. The rate out of Level 1 is roughly 200 Hz, while the rate out of

Level 1.5 is approximately 100 Hz. The final trigger, Level 2, consists of a farm of

microprocessors. This farm forms a software triggering system that further reduces

the trigger rate to about 2 Hz. Events passing the Level 2 trigger are sent to host

computers to be written to 8 mm tape.

4.3.1 Level Ø

The Level Ø trigger detects inelastic collisions, monitors luminosity, provides a relative

zero-time for other triggers, and provides a fast measurement of the z-coordinate

of the interaction vertex. The Level 0 detector consists of two hodoscopes with a

checkerboard-like array of scintillating counters covering the pseudorapidity region

1.9 < |η| < 4.3. The time resolution for each counter is 100-150 ps. Measurement of

the relative arrival times of the signals in each hodoscope provides a fast measurement

of the position of the interaction vertex to within 8 cm. Because ET is z-dependent,

this interaction position informationmust be determined quickly enough to be used by

the /ET triggers at Level 2. After obtaining information from the rest of the detector,

the position can be resolved to within ±3 cm. In a high luminosity environment,

multiple interactions occur frequently. When a multiple interaction occurs, the Level

Ø vertex measurement is ambiguous and a flag is set to mark this occurrence.
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4.3.2 The Level 1 Trigger Framework

The trigger at Level 1 must function within the 3.5 µs bunch crossing time. Because of

this stringent time limitation, the Level 1 trigger is composed of hardware logic devices

that find objects such as muons, electrons, and jets. Each of the hardware triggers

send decisions to the Level 1 framework, which uses a two-dimensional AND/OR

network array that collects 256 input bits. The output from the array consists of 32

preselected trigger conditions. Each of the trigger conditions is formed from the 256

inputs bits by requiring that each bit must be either asserted, negated, or ignored.

The conditions are selected from a trigger menu that is downloaded from the host

VAX cluster. If one of the 32 conditions is met, the detector electronics are read out

and sent to Level 2. In addition, the Level 1 framework also handles the prescaling

of the Level 1 triggers.

4.3.3 The Level 1 Muon Trigger

Each of the 16694 muon drift cells corresponds to a pad latch bit in the chamber

electronics that is set whenever the accumulated charge on the chamber cathode pads

exceeds a preset threshold. Module Address Cards (MACs) make this bit information

available to the Level 1 trigger. The MACs are kept physically distinct for five

separate eta regions (Table 4.3). The MACs take use hit information to form an

address (or “centroid”). These centroids represent the z-coordinate of the half-cell

of the PDT that was most likely hit. The granularity of the centroids in WAMUS

(SAMUS) is 5 cm (1.5cm). At Level 1, the MACs take the logical OR of 3 (4) centroids

to form “coarse” centroids in WAMUS (SAMUS).
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Name η range

CF |η| < 1.0

EF-North 1.0 < η < 2.4

EF-South −1.0 < η < −2.4
SAMUS North 2.4 < η < 4.0

SAMUS South −2.4 < η < −4.0

Table 4.3: Regions of the muon system.

This coarse centroid information is sent to Coarse Centroid Trigger (CCT) cards.

The CCT logically ORs the coarse centroids by another factor of four, producing

a hodoscopic pattern of “cells” that are 12 centroids wide (60 cm). WAMUS muon

tracks are formed whenever two or three layers have been hit and are aligned properly.

Pattern recognition is performed by the CCTs on logic contained in their EPLDs,

programmable logic devices that use EPROM (Erasable Programmable Read-Only

Memory) memory cells. One CCT per octant sends tracks to a final summing CCT.

The summing CCTs send trigger decisions to the trigger monitor card (TRGMON)

located in the muon supervisor crate. The TRGMONmaps the CCT trigger informa-

tion onto the 16 trigger states. The trigger states are then sent to the Level 1 trigger

framework. The muon trigger control computer (MUTCC) receives the trigger map-

ping from the host VAX cluster and sends it to the TRGMON. The supervisor crate

also distributes timing signals from the trigger framework to the MAC, Level 1, and

Level 1.5 trigger crates.

4.3.4 The Level 1.5 Muon Trigger

The Level 1.5 muon trigger uses the full centroid resolution of the MACS, allowing

sharper momentum cuts on the tracks and better rejection of bad tracks. The MACs

strobe their information to Octant Trigger Cards (OTCs) upon receipt of a Level
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1 accept. The OTCs use combinations of the A, B, and C layer centroids to form

addresses that are used to access their static random access memories (SRAMs). The

SRAMs contain patterns used in identifying trigger conditions. These patterns are

regional and will be discussed in detail for each region. The OTCs contain a 4 × 4

array of SRAMs, allowing the OTCs to simultaneously process up to 16 ABC centroid

combinations.

Following the SRAM lookup, the centroids associated with good Level 1.5 triggers

are used to form another address for an additional set of memories, producing two

24-bit user-defined trigger words. These trigger words are placed into FIFO’s for

later readout by the Octant Trigger Manager (OTCMGR). The OTCMGR applies

a second p
µ

T
cut using the centroids in the trigger words. This design affords the

Level 1.5 trigger the flexibility of applying different p
µ

T
thresholds. The OTCMGR

produces trigger decision data for each η region and sends it to the TRGMON. The

TRGMON translates the trigger decision information into 16 muon trigger states to

be used by the trigger framework in the global physics trigger decision. All Level 1.5

trigger decisions and centroid patterns associated with good triggers are written to

tape if the event passes Level 2.

4.3.5 Level 2

The Level 2 trigger system consists of 32 micro-VAX 4000-M60 and 16 micro-VAX

4000-M90 worker nodes. Four additional micro-VAX 4000-M60s were used as control

nodes that managed the operations of the worker nodes. Level 2 collects Level 1 and

Level 1.5 triggers at a rate of roughly 100 Hz and reduces the rate to approximately

2 Hz. To keep dead time at a minimum (< 5%), each node must process an event
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within 350 ms.

The Level 2 software is built around collections of algorithms called “tools.” Each

tool is designed to recognize a specific object or condition within an event. Tools

can recognize muons, electrons, photons, jets, taus, scalar and missing ET, etc. The

tools are developed in a VMS environment offline. This environment uses a Level 1

simulator to mimic the behavior of the level 1 hardware. Before using them online,

the tools are tested using data and Monte Carlo simulation. Further tests were made

during ‘shadow runs,’ during which a test version of the Level 2 code is loaded into

one of the nodes. Data is sent to this node for testing of the new tools, but this node

may not participate in trigger decisions.

The triggers and tools are specified by a script file. This file contains the descrip-

tion of 32 Level 1 triggers. Each Level 1 trigger has attached to it at least one Level 2

filter. Each script may include up to 128 Level 2 filters. Each filter consists of various

combinations of the tools described above. If an event passes even one of the filters,

the event is transferred to the host computer to log and record the event.
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CHAPTER 5

DATA SAMPLE SELECTION

The first step in obtaining the b-quark production cross section involves obtaining

the differential b-produced muon cross section

dσ
µ

b

dp
µ

T

=
1

∆η∆p
µ

T

· N b
µ(∫ L · dt) · ε , (5.1)

where∆η is the pseudorapidity region (1.6 units of pseudorapidity for |ηµ| < 0.8),∆p
µ

T

is the bin width in transverse momentum, N b
µ is the number of muons in the sample

determined to have originated from a b quark decay after background subtraction

and momentum unsmearing.
∫
L · dt is the total integrated luminosity for the data

sample, and ε is the combined efficiency and acceptances of all muon and jet cuts.

To measure the muon cross section, triggers select events with potentially good

muons for analysis. The events are reconstructed and processed into an easily ana-

lyzed database format (an ntuple). Offline selection cuts further ensure the quality of

the muons and jets in the analyzed events and are designed to enrich the data sample

in muons produced by a b-quark decay.

5.1 Data Collection and Processing

The data for this analysis were collected during the December 1995 collider run at

Fermilab. During this run, the Tevatron produced pp̄ collisions with a center-of-

mass energy of
√
s = 630 GeV, corresponding to global run numbers 94874 through

95389. The average instantaneous luminosity was 0.7 · 10
30 crossings/(cm2s) and
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never exceeded 3 · 10
30 crossings/(cm2s). Data from runs 95077, 95078, 95080, 95087,

and 95296 are excluded from the data sample because their runs have zero recorded

luminosity. The total integrated luminosity recorded in the three-week running period

was 537 nb−1.

5.1.1 Event Reconstruction

After event information is written to tape, an algorithmprocesses the raw information,

such as hits in the muon chambers and ADC values in the calorimeter, to reconstruct

the trajectories and momenta of the products of the pp̄ collision. This algorithm,

called DØ����, identifies the tracks and hits in the detector with physics objects

(photons, electrons, muons, and jets). The data sample was processed with version

12.21 of DØ����.

In general, as part of the reconstruction procedure, events are written to various

streams based on their characteristics. Each stream is enriched in events consistent

with a particular type of analysis. The ALL stream is the master stream, containing

every event written to tape. In the low energy run, only a single data stream, dubbed

the LNR stream, was written to tape.

5.2 Trigger Requirement

Each event in this analysis is acquired with the ��_1_���_�� trigger. This

trigger was defined in the global trigger list in the following way:

trig_bit mu_1_cent-lnr spec_trig spec_trig_3 prescale 100000

terms beam & good beam & mu (1, y1) & mu_scint;
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filt_bit mu_1_cent-lnr pass_1_of 5000

filters l2mu(1,9,3,mq_best,cal_confirm,l2_scint,mu_track_y1);

This definition requires that the Level 0 hodoscopes fired and that there was no Main

Ring veto. In addition, at Level 1, the trigger requires a single central muon without

a scintillator veto.

At Level 2, the muon found is required to be of the highest quality, with con-

firming energy deposition in the calorimeter along the muon track. The “l2_scint”

requirement indicates the state of scintillator confirmation. In this trigger, the cosmic

rejection is turned off, but a scintillator along the muon track must have fired. The

final Level 2 filter condition requires a muon track at Level 1.0.

5.3 Offline Muon ID and Event Selection

After the events are written to tape, further cuts are imposed to enrich the sample

in signal muons while rejecting as much noise and background as possible. The cuts

generally can be categorized into muon quality cuts, kinematic and fiducial volume

cuts, and associated jet cuts. Scintillator cuts are introduced separately to emphasize

the rejection of cosmic ray muons obtained with these cuts. All cuts and their effects

are shown in Table 5.1.

5.3.1 Muon Quality Cuts

The trigger system provides very loose muon quality cuts to increase bandwidth in

the trigger system. Because the trigger must operate very swiftly, however, offline

quality cuts are required to remove noise and spurious hits that get reconstructed as
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Cut Cut Definition Nµ after cut

Number of muons 88470
Kinematic cut 3 GeV/c < p

µ

T
< 30 GeV/c 83008

Pseudorapidity cut |η| < 0.8 68511
Fiducial Volume 50

◦ < φ
µ
< 130◦ 31883

Trigger ��_1_���_�� = 1 27948

Muon Quality Cuts

Flag word IFW4 ≤ 1 27948

Hadronic fraction HFRAC = 1 21592

MIP confirmation ECAL1 > 1 GeV 18935

Momentum kick
∫
B · dl > 0.6 GeV/c 18781

Scintillator Cuts

Scintillator flag SCINT = 1 17784
Delta time-of-flight |∆Ttof | ≤ 15 ns 11765

Associated Jet Cuts

Jet energy Ejet

T
≥ 12 GeV 1288

µ - jet distance ∆R ≤ 0.7 1241

Table 5.1: The list of selection cuts and their effects.

muons.

Muon Track Quality Flag

Each track reconstructed from muon chamber hits is assigned a “quality of fit” flag.

Hits in the muon system are fit to two straight lines that meet in the center of the

iron toroid, where the path of the muon is bent by the toroidal field. Routines in

the reconstruction algorithms select tracks based on the residuals of the fit, effec-

tively providing a very loose (χ2 ≤ 500) selection. The value of the flag, IFW4, is

incremented by one for each of the following criteria that are not satisfied:

• Good fit in the non-bend direction

• Good fit in the bend direction

• Good fit to the vertex in the non-bend direction
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• Good fit to the vertex in the bend direction

Requiring IFW4 ≤ 1 reduces contamination of the sample due to cosmic ray muons

and reconstructed noise by requiring at least three of the four above conditions are

satisfied.

Muon Minimum Ionizing Energy Deposition

Muons produced at the interaction vertex deposit an energy in the calorimeter con-

sistent with a minimum ionizing particle (MIP). Tracks that are not consistent with

this energy deposition are likely to be cosmic ray muons or tracks reconstructed from

noise. For candidate muons, the energy deposited in each calorimeter cell along the

muon track is added with the energy of the nearest neighboring cell. The summed

energy, ECAL1, is required to exceed 1.0 GeV.

Hadronic Fraction

The fraction of coarse hadronic calorimeter layers exhibiting energy deposition along

the reconstructed muon track is denoted HFRAC. All four layers are required to

contain energy, corresponding to HFRAC = 1.

Momentum Kick

The integral
∫
B · dl is calculated. The value of this integral must exceed 0.6 GeV/c

to ensure good muon momentum measurement and avoid the edges of the iron toroid

where the magnetic field map is less accurate.
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Bin Number pµ
T
range (GeV/c)

1 3.0 - 3.5
2 3.5 - 4.0
3 4.0 - 4.5
4 4.5 - 5.5
5 5.5 - 6.5
6 6.5 - 9.0
7 9.0 - 12.0
8 12.0 - 15.0
9 15.0 - 30.0

Table 5.2: Transverse momentum ranges as a function of bin number.

5.3.2 Kinematic and Fiducial Cuts

The muons used in this analysis are required to have a transverse momentum between

3 and 30 GeV/c. Muons with transverse momenta less than 3 GeV/c are not energetic

enough to pass through the iron toriod in the central muon system. The muon

momentum from the ���� bank is used when the global fit used a central detector

(CD) track. If no good CD match was found, a point in the calorimeter was used and

the correct muon momentum is obtained from the ���� bank.

The bins of muon transverse momentum are shown in Table 5.2. The bins were

chosen so that approximately the same number of muons are found in each bin before

background subtraction to keep the statistical error approximately the same across

all bins. While muons below 4 GeV/c generally do not make it through the central

iron toroid with a reliable momentum measurement, they are included for purposes

of momentum distribution unsmearing, as is the low statistics bin between 15 and 30

GeV/c.

The muons are required to be in the central region (|ηµ| ≤ 0.8). The muon tracking

chambers in the central region suffered from a buildup on the anode wire due to the
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outgassing of material in the chambers. The source of the buildup was the vapor of

the “Glas-Steel” polyester-epoxy resin of the cathode pad. This buildup decreased the

efficiency of muon detection significantly. Running high current through the anode

wires, a process called “zapping,” [41] removed the buildup from the wires. Not all

chambers were zapped prior to the 630 GeV running. Instead, the zapping occured

only for alternating B and C layer chambers on the sides of the detector. Muons used

in this analysis, therefore, are constrained to the fiducial region 50◦ < φµ < 130◦,

because muon chambers on the sides and bottom of the detector have efficiencies

that are not well understood. Because b-quark production is isotropic, the number

of muons can be scaled by a factor of 4.5 to account for this acceptance in φ.

5.3.3 Scintillator Cuts

The cosmic cap scintillators installed during Run 1B provide a powerful tool for

reducing cosmic ray muon background. The reconstructed muon track must point to

a scintillator that fired, and the timing information for the scintillator that fired must

be available (in our ntuples, this requirement corresponds to SCINT=1). Further, the

expected time of flight is subtracted from the measured time of flight to obtain ∆Ttof .

Signal events should exhibit ∆Ttof values that lie within a gaussian peak around 0

ns. Because the passage through the detector of a cosmic ray muon is not correlated

with beam crossing times, the cosmic background is flat in ∆Ttof for ∆Ttof values in

the interval [-20, 40 ns]. Requiring |∆Ttof | ≤ 15 ns removes a great deal of cosmic ray

contamination from the sample, and the remainder can be estimated as a function of

muon transverse momentum. See Section 6.1 for more detailed information on the

cosmic ray muon background subtraction.
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5.3.4 Associated Jet Requirement

While the scintillator cuts reduce the amount of cosmic background, requiring the

association of each muon to a nearby jet provides more powerful background reduction

in two ways. First, the fraction of cosmic ray muons in the muon plus jets sample as

a function of pµ
T
is lower than that found in the inclusive muon data sample. Second,

muons coming fromdirect b-quark decays exhibit a very different prel
T

distribution from

those resulting from direct charm, pion, or kaon decays. The variable prel
T

is defined as

the component of the muon momentum perpendicular to the associated jet axis and

is the variable that allows us to separate our b-quark signal from background. The

use of prel
T

to extract the fraction of muons from bottom decays is detailed in Section

6.2.

Jet Finding Algorithm

The definition of a jet used in this analysis is the summation of energy deposited in

the calorimeter within a cone in η-φ space of radius

∆R =

√
(∆η)2 + (∆φ)2 = 0.7. (5.2)

Reconstruction of jets found in the DØ calorimeter begins with a list of measured

values of transverse energy found in each of the calorimeter trigger towers. The trigger

towers are projective towers of calorimeter cells that point toward the interaction

region at the center of the detector. The segmentation of the trigger towers is generally

0.1 × 0.1 in η − φ, getting slightly larger in the forward regions near the beampipe.

The energy in the towers is corrected for the vertex position measured in the central

detector.
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Jet reconstruction begins by finding pre-clusters, localized energy deposits used

as seeds for the iterative reconstruction process. The pre-clusters consist initially of

adjacent towers that exhibit transverse energies greater than 1 GeV. The average

ET-weighted coordinate in η − φ is used as the starting coordinate for the jet axis.

The reconstruction algorithm then determines the weighted average of all cells within

a 0.7 cone around this axis to form a new jet axis. The process repeats until the

weighted axis position is found to be the same as in the previous iteration. When all

jets in the event have stabilized in this manner, a jet ET of 8 GeV is required.

After the jets have stabilized, the reconstruction code determines whether the jets

must be split or merged by examining the ET overlap between any two jets. If two

jets share more than 50% of their transverse energy, they are merged. Otherwise, the

transverse energy is assumed to be from the jet with the closest axis. Two different

preclusters found within ∆R = 0.1 are assumed to be identical, and the one with the

smaller ET is removed.

Jet Quality Cuts

A set of quality cuts has been developed to reduce the number of fake jets in the

sample. Fake jets come from main ring noise, hot cells in the calorimeter, and

bremsstrahlung from cosmic ray muons. The efficiencies of these cuts have been

studied extensively. They have been found to range from 96% efficient for 11 GeV

jets and 91% efficient for 400 GeV jets. The rejection for fake jets is greater than

95% [42].
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Electromagnetic Fraction The fraction of jet ET in the electromagnetic layer of

the calorimeter is required to be less that 0.95. This cut has been determined to

be 90% efficient in removing fake jets originating from calorimeter ‘hot cells.’ Monte

Carlo studies suggest that the efficiency for real jets is 99% except for a slight decrease

in the region between the central and end calorimeters.

Coarse Hadronic Fraction The fraction of jet ET in the coarse hadronic layer

of the calorimeter is required to be less that 0.5. This cut helps eliminate fake jets

originating fromMain Ring noise. The Main Ring passes through the coarse hadronic

portion of the caloimeter in the top of the detector. This cut is 90% effective at

removing fake jets caused by Main Ring activity, and 99% efficient at removing hot

cells in the coarse hadronic layer of the calorimeter. For real jets, the efficiency is

99%, except in the crack between the central and end calorimeters (95%).

Hot Cell Ratio The hot cell ratio is defined to be the ratio of the energy in the

highest energy cell in a jet to the energy in the second most energetic cell. Real jets

are not expected to exhibit large variations in cell energy within a given jet. The hot

cell ratio is required to be less than 20 for this analysis. This cut removes fake jets

originating from calorimeter noise.

Associated Jet Requirement

The muons in the data sample are required to lie within the jet cone, so the separation

in η − φ space between the reconstructed muon track and the jet axis must satisfy

∆R ≤ 0.7. The associated jet is required to have a transverse energy ET ≥ 12 GeV,
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which includes the transverse momentum of the muon. Efficiencies for reconstruction

of jets below 12 GeV are not well understood, so they are withdrawn from consider-

ation.

In addition to the cosmic background reduction associated with requiring an asso-

ciated jet, the requirement also removes nearly all of the Drell-Yan andΥ background,

because muons from these processes are generally isolated. It is expected that less

than 0.01% of the events in the data sample originate from these processes.

5.3.5 Variable Correlations

Various pieces of this analysis rest on the assumption that certain variables are not

strongly correlated. This brief section introduces correlations and presents the cor-

relations between the variables pµ
T
, prel

T
, and E

jet

T
. Further details about correlation

and correlated errors are shown in Appendix B.

The correlation ρXY between two variables X and Y is given by the expression

ρXY =
σXY

σX · σY

, (5.3)

where σXY is the covariance between X and Y , defined by

σXY = X · Y −X · Y . (5.4)

Here, X is the average value of a variable X. In the expression for the correlation

above, σX is the square root of the variance of the variable X, calculated by

σ2X = X2 −
(
X
)2
.

Correlation can be understood as a normalized covariance between two variables,

constrained to lie in the interval [−1, 1]. If ρXY = 1, the variables X and Y are said
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p
µ

T
prel
T

E
jet

T

p
µ

T
1 .241 .0821

prel
T

.241 1 .0827

E
jet

T
.0821 .0827 1

Table 5.3: Correlations between three variables used in this analysis.

to be completely correlated, indicating that an increase of 1σ in the value of variable

X requires an increase of 1σ in the value of variable Y . Completely anti-correlated

variables (ρXY = −1) have the property that an increase of 1σ in the value of variable

X requires a decrease of 1σ in the value of variable Y . Pairs of variables with ρXY = 0

are uncorrelated.

Table 5.3 shows the correlations between variables in the selected muons plus jets

data sample. Note that this is not a proper full correlation matrix; each pair of

variables was considered independently, using the prescription above.

The table shows that all pairs of variables are positively correlated. E
jet

T
, however,

is not significantly correlated with either variable. The variables p
µ

T
and prel

T
are more

stongly correlated, although .25 is not a strong correlation. The consequences of this

slight correlation are discussed in the next chapter.

5.3.6 Sample Events

A total of 1241 events pass all selection cuts in the muon sample. In general, the

analysis is performed using raw event information, but it is often useful to use an event

viewer to scan events. Event displays can help identify problems in the reconstruction

algorithms and offer a method of seeing what is occurring an the event.

Figures 5.1 and 5.2 depict two sample events from the selected data sample. In the

event displays, the muon track traversing the muon system is evident, as well as the
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bending of its path in the center of the iron toroid. In addition, the energy deposition

in the calorimeter indicates the presence of a low energy jet associated with the muon.

The detector is shown in profile from the side, and the muon is traversing the top of

the detector.

5.3.7 Comparison with Monte Carlo

Because this analysis relies on fully reconstructed ������ Monte carlo for the shapes

of the input distributions for background subtraction, and on the relative contribution

of sequential to direct bottom decays, we must briefly compare the selected data to

the Monte Carlo Samples used. Figures 5.3 through 5.5 compare the selected data to

������ MC (RIO sets 3 and 4 with the FNAL π/K sample added). The distributions

in the figures are shown normalized to one another.

Because the muon transverse momentum shapes do not agree, we first obtain

the measured muon cross section as a function of true muon transverse momentum

(obtained later in this note). The raw ������ pµ
T
is also obtained for bottom quark

decays as a function of generated transverse momentum. A ratio of the two distrib-

utions is used to obtain weights as a function of real pµ
T
. Each reconstructed muon

in the ������ sample, is given a weight based on the transverse momentum of its

associated generated muon. The new reconstructed pµ
T
spectrum agrees well with the

measured data sample (Figure 5.6). The new weighting scheme does not significantly

alter either the Ejet

T
or the prel

T
distributions.
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Figure 5.3: The muon transverse momentum spectrum from fully weighted, selected
������ events (histogram) compared to selected data events (stars).

Figure 5.4: The spectrum of muon transverse momentum relative to the associated
jet axis from fully weighted, selected ������ events (histogram) compared to selected
data events (stars).
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Figure 5.5: The jet transverse energy spectrum from fully weighted, selected ������

events (histogram) compared to selected data events (stars).

Figure 5.6: Reweighting the Monte Carlo provides considerably better agreement
between data and Monte Carlo.
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5.3.8 Cut Efficiencies

All requirements placed on the data set result in a loss of a portion of the b-produced

muon cross section. To obtain the true cross section, corrections must be applied

to the data to recover the lost muons. Because the efficiencies are applied after

unfolding the data (Chapter 7), the efficiencies are determined as a function of true

muon transverse momentum.

These corrections are represented in the expression for the b-produced muon cross

section (Eq. 5.1) as

ε = εreco · εtrig · εµ · εjet, (5.5)

where εreco represents the reconstruction efficiency, εtrig represents the trigger effi-

ciency, εµ denotes the muon quality cut efficiency, and εjet represents the efficiency

and acceptance of requiring a good jet within ∆R ≤ 0.7. All efficiencies are obtained

for muons coming from direct and sequential bottom quark decay only. The manner

in which these efficiencies were obtained is described below, and the values of the

efficiencies are summarized in Table 5.4.

Muon Trigger Efficiency

Using Rio Monte Carlo sets 3 and 4 (see Section 3.3), each event containing one

muon was selected. From this distribution, the fraction of the events that satisfied

the trigger bit representing ��_1_���_�� is considered to be the muon trigger

efficiency. Because the trigger bit comes from Level 2, this efficiency represents the

total L1·L2 trigger efficiency. To smooth out the efficiency correction, a hyperbolic
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tangent with the functional form

εtrig = p1 · tanh (p2 · p
µ

T
+ p3) (5.6)

was fit to the Monte Carlo points. The resulting function, evaluated at the bin centers,

was used as the trigger efficiency correction to the data. The original points and the

fit are shown in Figure 5.7. The error band on the function results from the error on

the fit parameters calculated within �����. A more explicit calculation of the error

determination may be found in Section B.3.

Figure 5.7: A hyperbolic tangent fit to the Monte Carlo. The error band is the
statistical error on the function due to parameter errors from �����. The trigger
efficiency is obtained as a function of real muon transverse momentum.

To cross-check the trigger efficiency from the Monte Carlo, data events containing

a reconstructed muon satisfying any non-muon trigger were selected to obtain an

unbiased sample of muons. Then the total L1·L2 muon trigger was required and

the efficiency computed by taking the ratio of muons passing the trigger to those in

the unbiased sample as a function of muon transverse momentum. The Monte Carlo
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efficiency is recomputed as a function of reconstructed muon transverse momentum.

Agreement within errors between the data and Monte Carlo efficiencies as a function

of reconstructed transverse momentum is shown in Fig. 5.8.

Figure 5.8: The combined Level 1 and Level 2 trigger efficiency in both the data and
the Monte Carlo.

Muon Reconstruction Efficiency

The muon reconstruction efficiency is the probability that a real muon passing through

the muon system will be reconstructed after firing the combined L1·L2 trigger. Us-

ing the Rio Monte Carlo sets 3 and 4, processed with DØ����, the reconstruction

efficiency is obtained as a function of p
µ

T
by taking a ratio of the number of muons

reconstructed to those generated within ������. The efficiency of reconstruction is

roughly 96%, and the values used in the calculation of the total efficiency are given

in Table 5.4.
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Muon Quality Cut Efficiency

To obtain the muon quality cut efficiency, the transverse momentum spectrum is

plotted for muons from Rio Monte Carlo sets 3 and 4 and the FNAL π/K Monte

Carlo set that satisfied reconstruction and trigger requirements. The muon quality

cuts were applied and a new pµ
T
spectrum was plotted. The ratio between the two

distributions is taken to be the muon quality cut efficiency. The values used in the

calculation of the total efficiency are also given in Table 5.4.

Associated Jet Requirement

The correction to the muon transverse momentum spectrum due to the associated

jet requirement is large, a combination of both jet acceptances and inefficiencies

associated with jet reconstruction and identification. This correction will be referred

to here as the associated jet cut efficiency.

Muons coming from bottom quarks are mostly lost due to the efficiency of finding

a jet with a transverse energy greater than 12 GeV. Figure 5.9 demonstrates that

a ∆Rmin cut at 0.7 does not eliiminate a significant fraction of the muons, but a

cut on the jet transverse energy does. In addition, the associated jet cut efficiency

is similar across all muon transverse momenta, borne out in Figure 5.10. In Figure

5.10, the data sample has been divided roughly in half. The histogram represents the

associated jet transverse energy for muons with a low transverse momentum, while

the stars represent the associated jet ET for muons with a high transverse momentum.

The plot also confirms the lack of correlation between the two variables (computed

in Section 5.3.5).



108

Figure 5.9: The ∆Rmin and Ejet

T distributions in the data.
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Figure 5.10: The muon plus jet data sample is divided roughly in half, and the
associated jet transverse energy is plotted. The histogram represents the lower pµT
bin, and the stars represent the upper pµT bin.
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The associated jet cut efficiency was obtained from Monte Carlo. In three in-

dependent ������ samples, muons with an associated jet were selected from a base

sample of muons passing reconstruction, trigger, and quality requirements. The ra-

tio for the spectrum of muons with associated jets to the spectrum of reconstructed,

triggered muons was taken. The samples chosen were IND Set 1, IND Set 2, and

a combination of Rio Sets 3 and 4. The evaluated points are shown in Fig. 5.11.

The results of the computation agree within Monte Carlo statistical errors over the

transverse momentum interval of interest (between 4 and 15 GeV/c).

To obtain the associated jet cut efficiency used to compute the b-produced muon

cross section, we take a weighted average of the results of the three samples. The

result of the weighted average is shown in Fig. 5.12. For details on the weighted

average computation, see Appendix B.

Scintillator Cut Efficiency

The 15ns scintillator timing window was chosen to remove some cosmic ray muon

background while retaining all of the data. The scintillator cuts are over 98% efficient

for data, where the inefficiency results from muons slipping through cracks in the

scintillator coverage. The rest of the cosmic background subtraction is explained in

Section 6.1.

Uncertainties on the Efficiencies

The muon trigger and the jet reconstruction corrections are both obtained using fully

reconstructed Monte Carlo. The trigger efficiency, obtained using ������ events as a

function of true muon transverse momentum, was fit with a hyperbolic tangent. The
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Figure 5.11: The associated jet cut efficiency for three independent Monte Carlo
samples (shown offset for clarity). The values are consistent within errors over the
region of interest (4 < pµT < 15 GeV/c).

fit error is taken to be the uncertainty on the correction and is included in the error

on the trigger correction shown in Fig. 5.12.

The associated jet correction is evaluated using three samples of Monte Carlo as

described above. Part of the uncertainty on the jet correction is taken to be the

statistical error on the weighted average of the efficiencies combined in quadrature

with half the maximum spread of the values from the three samples.

In addition to the uncertainty on the jet cut efficiency due to the weighted av-

erage calculation, jet finding efficiencies were compared for samples of ������ and

���	�� Monte Carlo events. The Monte Carlo event generator ���	�� was chosen

because it handles the particle fragmentation and jet production differently [43]. A

5% uncertainty [44], flat in muon transverse momentum, is included in the associated
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Figure 5.12: Cut efficiencies as a function of muon transverse momentum. The stars
represent the final correction to the data. Not shown in the figure are the recon-
struction and quality cut efficiencies (∼95%). The fiducial volume correction is not
included here. The stars represent the total correction to the data.
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pµ
T
(GeV/c) µ Reco µ Trigger µ Quality Jet Corr. Total Corr.
4 − 4.5 .95 ± .01 .31 ± .02 .96 ± .01 .25 ± .04 .070 ± .013
4.5 − 5.5 .96 ± .01 .44 ± .02 .92 ± .01 .24 ± .02 .094 ± .009
5.5 − 6.5 .97 ± .01 .54 ± .02 .96 ± .01 .27 ± .03 .13 ± .017
6.5 − 9 .97 ± .01 .58 ± .01 .95 ± .01 .27 ± .03 .14 ± .014
9 − 12 .97 ± .01 .59 ± .01 .95 ± .01 .31 ± .04 .17 ± .020
12 − 15 .96 ± .02 .59 ± .01 .95 ± .02 .41 ± .09 .22 ± .052

Table 5.4: The contributions to the total efficiency as a function of muon transverse
momentum with associated uncertainties.

jet cut efficiency to account for potential Monte Carlo generator dependence.

In the inclusive muon analysis at
√
s = 630 GeV [45], the muon cut efficiencies

were found to be systematically consistent with the data to within a few percent.

Uncertainties on the order of 2-3% were introduced for the hadronic fraction and

scintillator cuts (HFRAC = 1 and the SCINT = 1 cuts).

The total efficiency correction is the product of the individual efficiencies (Eq.

5.5). The total error is given as the sum in quadrature of the relative error on each

correction. The efficiencies and uncertainties used to correct the cross section as a

function of muon transverse momentum bin are shown in Table 5.4.

With the sample of candidate muons chosen and the efficiencies for the selection

criteria, it remains to determine the fraction of the sample muons originating from the

decay of a bottom quark. The next chapter presents the techniques used to extract

the b-quark produced muon signal from the selected data sample.
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CHAPTER 6

SEPARATION OF SIGNAL FROM BACKGROUND

To obtain the b-produced muon cross section, the fraction of the muons in the data

sample originating from the decay of a b-quark must be determined. Backgrounds

to this signal include muons originating in cosmic ray showers, primary charm quark

decays, and π/K in-flight decays. A fit to scintillator timing information permits an

estimation of the level of cosmic ray contamination in the sample, while a fit to the

data in the variable prel
T

enables an estimation of the fraction of the muons in the

sample coming from bottom decays. The number of b-produced muons
(
N b

µ

)
in the

data sample per muon transverse momentum bin is given by

N b
µ = Nµ · fNC · fb, (6.1)

where Nµ is the raw number of measured muons, fNC is the fraction of non-cosmic

muons, and fb is the fraction of bottom-produced muons in the data sample.

6.1 Estimation of the Cosmic Ray Muon Background

Energetic particles incident upon the earth create showers of particles in the upper

atmosphere. These showers predominantly produce low mass mesons, specifically

pions (π) and kaons (K). Charged pion and kaon decays have a very high probability

of decaying to a muon, making the muon the most copiously produced charged particle

from cosmic ray interactions.

At sea level, muons coming from cosmic ray interactions follow a cos2 θ distrib-

ution, where θ is the zenith angle at production, with a mean energy of roughly 2
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GeV. If a cosmic ray muon is nearly vertically incident on the top of the detector,

then, it may pass the minimum p
µ

T cut of 3 GeV/c and contaminate the muon data

sample. While muon quality and associated jet cuts can remove much of the conta-

mination due to cosmic ray muons, a small fraction remains that must be estimated

as a function of muon transverse momentum.

The cosmic cap scintillators (see Section 4.2.3) provide the most powerful tool for

estimating the background due to cosmic ray muons. The time of flight of the muon

is obtained using the difference between the beam crossing time and the time the

scintillator fired. Given the measured time-of-flight and the expected time-of-flight,

the ∆Ttof = Tmeas
tof − T

exp

tof , or “delta time-of-flight,” can be computed.

Previous results from an analysis of time-of-flight data with a larger muon sample

[45] suggest that because cosmic ray muon arrival times are not correlated with beam

crossings, their ∆Ttof distribution is flat within the interval [-20, 40] ns, while signal

muons exhibit a gaussian ∆Ttof distribution (Figure 6.1). Figure 6.2 shows the ∆Ttof

distribution in the selected data sample for this analysis. Note that the requirement

of an associated jet reduces the fraction of cosmic ray muons in the sample. Also

shown in Figure 6.2 is the 15 ns cut and a sample log-likelihood fit of a gaussian plus

a constant to the distribution.

The single muon analysis suggests that the fraction of muons originating from

cosmic rays increases as a function of muon pT, so the cosmic ray muon fraction is

estimated independently for each p
µ

T
bin. The ∆Ttof distribution between -20 and

40 ns is plotted for each bin, and the number of cosmic ray muons within the 15 ns

window is estimated by fitting the distributions with a gaussian plus a constant; the

number of cosmic ray muons is then simply the value of the constant times the width
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Figure 6.1: A fit of a gaussian plus a constant to the ∆Ttof distribution over the
interval [-20, 40 ns] for the inclusive muons data sample.
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Figure 6.2: The scintillator timing distribution in the data sample. Also shown is a
fit of a gaussian plus a constant to the data and the 15 ns cut used to select events.

of the window in ns. The fits to all muon transverse momentum bins are shown in

Figures 6.3 and 6.4.

Figure 6.5 shows the results of the ∆Ttof fits as a function of muon transverse

momentum. Also shown in Figure 6.5 is a fit to the cosmic ray muon fraction found

in each bin. The last two bins have been combined to avoid low statistics in the 15-30

GeV/c bin. The functional form employed in the fit is

fcos = ea1+a2p
µ

T. (6.2)

The errors band represents the error on the fit only. The correction applied to the

data is the fraction of non-cosmic ray muons in the sample, obtained by

fNC = 1 − fcos, (6.3)
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Figure 6.3: The scintillator timing information fit with a gaussian plus a constant for
the first four bins of muon transverse momentum.

where fcos is the value of the fitted function at the center of the muon transverse

momentum bin. The values of fNC used to compute the bottom produced muon

cross section are given in Table 6.1.

6.2 Obtaining the b-Fraction in the Data

To determine the b-quark cross section, first the fraction of muons in the sample

that originate from the decay of a bottom quark (fb) must be determined. Two

mechanisms of b-quark decay contribute significantly to the total muon cross section.

The first mechanism, denoted b primary decay, occurs when a bottom quark decays

to a W boson and a charm quark, and the W subsequently decays to a muon and a

muon neutrino. In the second mechanism, b sequential decay, a bottom quark decays
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Figure 6.4: The scintillator timing information fit with a gaussian plus a constant for
the last four bins of muon transverse momentum. The last two bins are combined
because statistics are poor in the 15-30 GeV/c bin.

Figure 6.5: The cosmic ray muon fraction estimated using a fit to the scintillator
timing information as a function of muon transverse momentum.
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p
µ

T
(GeV/c) fNC
4 − 4.5 .99 ± .002
4.5 − 5.5 .98 ± .002
5.5 − 6.5 .98 ± .003
6.5 − 9 .97 ± .003
9 − 12 .96 ± .004
12 − 15 .92 ± .007

Table 6.1: The fraction of muons from non-cosmic sources and associated uncertainty
for the bins used to compute the muon cross section.

to a W boson and a charm quark, but the charm quark subsequently decays weakly

to a strange quark and a W boson that decays into a muon and a muon neutrino.

These decays are described by the diagrams in Figure 6.6 (see also Section 3.1.3).

Backgrounds to these decays include primary charm decay and π/K in-flight decay.

Figure 6.6: Primary (left) and sequential (right) decays of a bottom quark.

Other potential backgrounds to the muon plus associated jet sample include W/Z

decay, Υ decay (bb bound states), J/ψ decay (cc bound states), Drell-Yan production

(qq → γ∗ → l−l+), hadronic punchthrough, and muon fakes. Just as the jet require-

ment is useful for removing isolated muons from cosmic ray contamination, requiring



121

an associated jet strongly suppresses processes that primarily produce isolated muons,

such as W/Z decay and Drell-Yan production. In addition, W and Z boson decays

generally produce muons with transverse momenta beyond the 30 GeV selection cut.

The cross section for muons originating from the Drell-Yan process is too small to

affect this measurement, as is the cross section for muons from upsilon decays [46].

The thickness of the calorimeter and the iron toroid is approximately 14 interaction

lengths and removes all hadronic punchthrough [38].

The variable prelT is defined as the component of the muon momentum perpendic-

ular to the associated jet axis (Figure 6.7), where the jet axis is defined after first

subtracting out the expected minimum ionizing particle from the jet [47]. Discrimi-

nation in prelT is available due to the heavier mass of the bottom quark; more energy

is available to kick the muon out of a bottom quark jet than a charm quark jet.

Figure 6.7: Graphic representation of the definition of Prel
T , the transverse momentum

of the muon relative to the associated jet.

The primary objective is to obtain a b-produced muon cross section as a function

of muon pT, but discrimination is only available in the variable prel
T
. The two variables

are not strongly correlated, so a simple fit in prel
T

provides very little information about
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the pµ
T
distribution. To obtain the fraction of muons originating in the sequential or

direct decay of a bottom quark as a function of muon pT, an event-by-event weighting

scheme is employed. For each muon in the data sample, the probability that the muon

originates from a b-quark decay is assigned as the weight for that muon. This weight

can be thought of as the “b-ness” of the muon. The sum of all the weights as a function

of pµ
T
divided by the total number of events in each bin is called the b fraction.

6.2.1 The Maximum Likelihood Fit

An event-by-event maximum likelihood fit is used to determine the fraction of muons

in the sample originating from a b-quark decay. To determine the fraction Aj of the

sample due to each of the contributing processes j, where j = 1, . . . ,Nj, we maximize

the log-likelihood function

L = lnL (6.4)

with respect to Aj. The likelihood function is a measure of the probability that a set

of measured quantities (xk) are distributed according to a probability density function

(ρ(xk)). The likelihood function is given by the expression

L =

Ni∏

i=1




Nj∑
j=1

Aj

Nk∏
k=1

ρ
j

k

(
xik
)

 , (6.5)

where the functions ρjk (xk) are the normalized probability functions for each variable

xk. In this analysis, only the variable prel
T

will be used, eliminating the product over k

distributions. Prior to performing the maximum likelihood fit, the prel
T

distributions

are normalized to unit area.
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Input Distributions

The maximum likelihood code requires normalized input distributions of the variables

being fit for signal and background. These input distributions are taken from the Rio

sets 3 and 4 weighted ������ samples. The prel
T

distributions shown in Figures 6.8,

6.9, and 6.10 depict fits to the Monte Carlo for direct charm, sequential (b→ c→ µ)

bottom, and direct bottom decays respectively.

The prel
T

distribution for a small sample of pions and kaons generated from 5 to

80 in hard scatter pT is plotted in Figure 6.11. The prel
T

distribution is for muons

of any transverse momentum above 3 GeV/c. Along with the π/K distribution,

a fit to the prel
T

distribution for primary charm decay to muons of any transverse

momentum above 3 GeV/c is also shown, normalized to the same area. Because the

prel
T

distribution for muons produced by pion and kaon decays is similar to that of

muons originating from charm decays, the charm decay distribution is assumed to

remove pion and kaon background as well.

In addition, the prel
T

distributions are weakly dependent on muon transverse mo-

mentum, so the fits are made in two pµ
T
bins for each process, a low bin and a high

bin. The division of 5.5 GeV/c was determined by the pµ
T
bin edge that divided the

Monte Carlo statistics roughly in half to improve the quality of the fits.

The functional form employed in all fits is that of a fourth degree polynomial

below a floating parameter and an exponential decay above:

ρ(x) =




p3 · x
4 + p2 · x

3 + p1 · x
2 − α · x x ≤ p5

β · e−p4·x x ≥ p5




, (6.6)
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Figure 6.8: Input charm prel
T

distributions taken fromMonte Carlo. The top (bottom)
distribution is for muons with transverse momenta less (greater) than 5.5 GeV/c.

Figure 6.9: Input sequential bottom prel
T

distributions taken from Monte Carlo. The
top (bottom) distribution is for muons with transverse momenta less (greater) than
5.5 GeV/c.
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Figure 6.10: Input direct bottom prel
T

distributions taken from Monte Carlo. The top
(bottom) distribution is for muons with transverse momenta less (greater) than 5.5
GeV/c.

Figure 6.11: The prel
T

distribution for muons coming from pions and kaons (histogram)
compared to a fit to the prel

T
distribution for muons originating in a primary charm

quark decay. Both distributions are integrated over all pµ
T
.
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where the pi are free parameters and

β = −

[
1

1+p4+p5

]
(p1 · p25 + 2p2 · p35 + 3p3 · p45) e

p4·p5

α = βp4e
−p4·p5 + 2p1 · p5 + 3p2 · p5 + 4p3 · p5

. (6.7)

The form is chosen to be continuous and smooth at prel
T
= p5.

Fixing the Sequential to Direct Ratio

Because sequential bottom decay exhibits a prel
T

spectrum similar to that of direct

charm decay, the normalization of the sequential decay can not be permitted to float

freely in the maximum likelihood fit. Fixing the ratio of sequential bottom decays

to direct bottom decays in the maximum likelihood fit removes a degree of freedom

from the fit and increases the quality of the fit. The ratio obtained from Monte Carlo

as a function of pµ
T
is shown Figure 6.12. Also shown is the fit of the functional form

f = p1 + p2 ·

(
1

x2

)
+ p3 ·

(
1

x3

)
(6.8)

to the ratio. The dotted bands represent the uncertainty on the fit from �����.

Constraining the ratio between sequential and direct decays reduces the number

of distributions to two, a bottom signal distribution and a background distribution.

These distributions are thus functions of muon transverse momentum as well as prel
T
.

For each event, the muon transverse momentum determines not only whether the

high or low distributions are used for each process, but also the ratio of sequential to

direct bottom decay. These functions are all normalized to unit area for any value of

p
µ

T
.

Because we are fitting only two distributions, the maximum likelihood fit must
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Figure 6.12: The ratio of sequential bottom decays to direct bottom decays in the
Monte Carlo.

calculate two parameters, subject to the constraint

Nj∑

j=1

Aj = 1. (6.9)

In practice, this constraint reduces the problem to a maximization as a function of a

single parameter, p1, where

A1 = p1

A2 = (1 − p1) .

(6.10)

The parameter p1 is determined in the maximum likelihood fit to the data to be

0.48 ± .03. The error represents the fit error determined by �����.

Results of the Maximum Likelihood Fit

The p
rel
T

distributions vary as a function of muon transverse momentum due to the

fixing of the sequential to direct ratio, so a global fit in the variable p
rel
T

can not be

shown. Instead, the results of the global fit must be shown for each p
µ

T
bin. Figures

6.13 through 6.15 show the fit results in the data for all p
µ

T
bins. Recall that the
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maximum likelihood fit uses all events in the data sample simultaneously, so bins

with fewer events are given less overall weight in the global fit.

Figure 6.13: Results of the maximum likelihood fit in the data for the first three muon
transverse momentum bins.
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Figure 6.14: Results of the maximum likelihood fit in the data for the middle three
muon transverse momentum bins.
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Figure 6.15: Results of the maximum likelihood fit in the data for the last three muon
transverse momentum bins.
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6.2.2 Determining the b-Fraction

To determine the bottom produced muon cross section, the fraction of muons origi-

nating from the decay of a bottom quark in the sample must be obtained. Each event

is given a weight by the maximum likelihood fit that determines the likelihood, on

average, that the muon was a product of a final state bottom quark. These weights

are summed in each bin of muon transverse momentum and divided by the total

number of events in that bin to obtain the b-fraction in that bin. The systematic

uncertainties associated with determining the b-fraction are discussed below.

Tests Using Monte Carlo

IND set 2 was used to test the maximum likelihood fitting method. The Monte Carlo

set was chosen despite low statistics because all events were generated in one large

bin of hard scatter transverse momentum, so all the ������ event weights are roughly

equal. Because the maximum likelihood code operates on an event-by-event basis, the

events must exhibit real physics distributions to be fit properly regardless of ������

weight. The systematic uncertainties shown in plots 6.16 through 6.18 come from the

errors on the fit parameters alone (see Appendix B for a more detailed discussion).

The original ������ are shown without error.

Figure 6.16 shows the result of fitting IND set 2 Monte Carlo using the prel
T

distri-

butions obtained from Rio sets 3 and 4. The results agree agree on average to within

3%.

The data b-fraction is not expected a priori to agree with that found in the Monte

Carlo. The maximum likelihood code must be able to account for a variable b-
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fraction. To test the fit, a subset of the IND set 2 was prepared with the bottom

quark contribution reduced by a factor of two. Figure 6.17 depicts the comparison

between the actual b-fraction and that found by the maximum likelihood technique.

In addition, another subset was prepared in which the background was suppressed

by a factor of two. The maximum likelihood technique was applied to this sample

and also demonstrates good agreement, shown in Figure 6.18.

Figure 6.16: A fit with the maximum likelihood technique to the IND set 2 Monte
Carlo.

b-Fraction in the Data

In Figure 6.19, the b-fraction found in the data is cross-checked with that found

in fully reconstructed, weighted ������ Monte Carlo (Rio sets 3 and 4 with FNAL

π/K). The data is found to be in good agreement with the Monte Carlo predictions.
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Figure 6.17: A fit with the maximum likelihood technique to the IND set 2 Monte
Carlo. In this test, the bottom contribution has been reduced by half.

Figure 6.18: A fit with the maximum likelihood technique to the IND set 2 Monte
Carlo. In this test, the background contribution has been reduced by half.
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pµ
T
(GeV/c) fb ∆fit ∆NC ∆bc/b ∆MC ∆total

4 − 4.5 .46 9.6 1.1 4 3 10
4.5 − 5.5 .47 8.7 1.2 4 3 9.2
5.5 − 6.5 .46 10. 1.4 4 3 11
6.5 − 9 .52 9.1 1.7 4 3 9.7
9 − 12 .55 13 2.7 4 3 14
12 − 15 .55 21 3.0 4 3 22

Table 6.2: The fraction of muons originating in sequential and direct bottom decays
and associated relative uncertainties (expressed in percent).

The uncertainties in the plot represent the statistical and systematic uncertainties

(discussed in the next section) on the b-fraction obtained in the data. The values of

fb used to compute the b-quark produced muon cross section are given in Table 6.2,

along with the contributions to the total systematic error from the various sources of

uncertainty.

Systematic Uncertainties on the b-fraction

The fraction of muons originating from the decay of a bottom quark in the data

will be used to calculate the b → µ cross section. Associated with this correction

are uncertainties arising from how well the method can replicate known Monte Carlo

samples, errors on the maximum likelihood fit parameters obtained from �����, un-

certainty due to the mis-estimation of cosmic ray muon background, and uncertainies

due to the sequential to direct decay ratio.

Closure Tests The maximum likelihood is stable over the range of b-fractions

tested, as shown in Figures 6.16 through 6.18. An uncertainty of 3%, flat in muon

transverse momentum, is applied to the correction as being due to the method alone.

The error associated with using only 2 bins of muon transverse momentum when
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Figure 6.19: The b-fraction in the data compared to fully reconstructed, weighted
������ Monte Carlo.
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obtaining the input distributions is contained herein

Fit Parameter The maximum likelihood fit yields a single parameter and an un-

certainty on that parameter. The parameter and the uncertainty are both obtained

from the ����� software package. The error on each event weight is calculated.

Because the errors are completely correlated from event to event (see Appendix B),

the errors on each weight are simply summed, not summed in quadrature. This sum-

mation reflects the overall shift of 1σ in the b-fraction for a 1σ shift in the value of

the fit parameter.

Cosmic Fraction Though the cosmic ray muon fraction is small (Figure 6.5), it

must be considered. The shape of cosmic ray muon prel
T

is compared to those of

bottom and charm decays in Figure 6.20. The sample of cosmic ray muons used for

this plot is obtained by making a cut of |∆Tof| > 15 ns in the data sample. For the

b fraction, it is assumed that cosmic ray muons mimic all processes equally, so that

the b fraction obtained from the fit does not change:

fb =
N b

µ · fNC

Nµ · fNC

=

N b
µ

Nµ

, (6.11)

where Nµ is the number of muons, N b
µ is the number of muons from a b decay, and

fNC is the fraction of muons in the sample estimated to be non-cosmic.

If cosmic ray muons do not mimic all decays equally, the b fraction changes. If

cosmic ray muons appeared to only originate from b decays,

f ′

b =

N b
µ −N cos

µ

Nµ −N cos
µ

, (6.12)

where N c
µ is the number of cosmic ray muons estimated using the fit technique de-

scribed above. If cosmic ray muons only appear to originate from charm and π/K
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Figure 6.20: Cosmic prel
T

distribution compared to those used in the maximum likeli-
hood fit. All functions have been normalized to unit area.

decays,

f ′′

b =

N b
µ

Nµ −N cos
µ

. (6.13)

The differences between these quantities and fb are shown in Figure 6.21. The differ-

ences, applied as a systematic error on fb, are averaged and further reduced by
√

1

3
,

assuming a uniform distribution in the variance [48].

Ratio A systematic shift in the b-fraction necessarily results from a variation of the

fixed ratio between sequential and direct bottom decays. The ratio was varied within

the errors of the fit shown in Figure 6.12, and the data refit with the maximum

likelihood technique. The resulting b-fraction was quite stable, exhibiting a difference

of about 4% for both the upper and lower error bands of the ratio fit.
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Figure 6.21: Errors on the b fraction due to cosmic background subtraction. In the
top plot, cosmics are assumed not to mimic any bottom decays. In the bottom plot,
all cosmics mimic bottom decays.
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6.2.3 Neural Network Analysis

Neural networks are often employed as a method for solving pattern recognition prob-

lems in which one wishes to separate a data sample into signal and background based

on characteristics of each. Basically extensions of the conventional methods, such as

multivariate fits, neural networks are often used when the signal and backgrounds

exhibit many independent variable distributions that differ slightly.

In general, one “trains” the network using equal-sized data samples of Monte Carlo

samples for signal and background. The network “learns” the multivariate patterns

associated with both signal and background. Then a data sample is fed through the

network, and the algorithm outputs a weight between zero and one for each event

that describes how much the like the signal or background the data is. The user then

selects a value at which to place a cut on this output distribution, a simple process if

the distributions do not overlap, and somewhat more difficult if they do. Above the

cut value, the event is considered to be in the signal sample.

A neural net was trained using the Rio set 3, Rio set 4, and FNAL π/K Monte

Carlo sets as input. The variables pµ
T
, the prel

T
of the muon, the distance in η−φ space

between the muon and the jet, the ET of the jet, and zfrag (the ratio of muon energy

along the jet axis to the energy of the jet) were selected because signal and background

Monte Carlo samples exhibited qualitatively different shapes. The trained net was

applied to the same Monte Carlo samples. The plot of the output weights is shown in

Figure 6.22. While the signal and background peaks are present, the separation is not

good: if a cut were to be placed, for example, at 0.5, much of the background would

remain in the sample, and much of the sample would be lost as background. The
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Figure 6.22: Neural network output for a Monte Carlo test. The signal and back-
ground peaks are present but are not well separated.
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problem with separating signal from background is assumed to result from extremely

correlated input variables.

6.3 Smeared b-Produced Muon Cross Section

A smeared muon cross section can be obtained using the b-fraction and the estimation

of cosmic contamination using the prescription in the introductory section to this

chapter. The raw number of muons (Nµ) and the number of bottom-produced muons

after background subtraction
(
N b
µ = Nµ · fNC · fb

)
are shown as a function of muon

transverse momentum in Figure 6.23. In Figure 6.24, the raw differential muon cross

section is presented; this plot includes the statistical error on the data as well as

the systematic effects of the cosmic subtraction and the application of the b fraction.

To obtain the true differential cross section, the distribution must be corrected (or

“unsmeared”) to account for the limited muon momentum resolution of the detector,

and also corrected for the efficiencies of the cuts described in Chapter 5.

6.4 Summary

This chapter has summarized the background subtraction methods used in this analy-

sis. When computing the bottom quark produced muon cross section, the values for

the non-cosmic fraction and the b-fraction, presented in Tables 6.1 and 6.2 respec-

tively, are used to compute the number of muons coming from bottom quark decays

(
N b
µ = Nµ · fNC · fb

)
. The next chapter describes the prescription for unsmearing the

muon momentum spectrum.
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Figure 6.23: The raw number of muons as a function of muon transverse momentum
before and after background subtraction. The errors shown are statistical only.
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⊕

Figure 6.24: The raw differential b-produced muon cross section. The errors shown
include systematic errors from background subtraction. This cross section does not
include momentum resolution or efficiency corrections.
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CHAPTER 7

UNSMEARING THE MUON MOMENTUM RESOLUTION

The DØ muon spectrometer consists of three layers of drift tubes, the first two layers

of which are separated by the central iron toroid. The toroid bends the muon in

polar angle, θ, allowing measurement of its momentum. Two effects, the position

resolution of the drift tubes and multiple scattering of the muon in the calorimeter

and toroid, contribute to the finite momentum resolution. To account for the effect

of the finite resolution on the on the true pµ
T
spectrum, the measured spectrum must

be unsmeared.

To understand momentum smearing, consider a steeply falling spectrum as a func-

tion of transverse momentum bin number (Figure 7.1, solid line). If the resolution

is not perfect, some muons with a true transverse momentum falling in one bin will

be measured as having a transverse momentum. In the extremely simple case that

the resolution is the same across all the bins, and the number of muons in each bin

is mismeasured so that 20% of the events in each bin migrate with equal probability

to the right and the left, more events migrate to the right across bin boundaries,

inflating the cross section at higher transverse momentum. The dotted line depicts

the smeared cross section.

In the DØ muon system, the smearing is somewhat more complicated. Bin widths

and momentum resolution vary as a function of muon transverse momentum. In addi-

tion, edge effects in the smearing occur because muons with real transverse momenta

less than 3 GeV can not penetrate the central iron toroid. An example of an edge
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effect is provided in Figure 7.1, in which events have been allowed to smear out of the

distribution to the left and right, while no events are permitted to smear in, resulting

in a suppressed spectrum at the low edge. In the data, edge effects and the efficiency

turn-on result in supression of the low end of the pµ
T
spectrum.

Figure 7.1: The smearing effect on a steeply falling spectrum. The solid line is the
real spectrum, and the dashed line is the spectrum after smearing.

7.1 Muon Momentum Resolution

The muon momentum resolution was obtained using the Run 1a Z → µµ data sample

and cross checked in Monte Carlo [50]. The data were fit with a simple function

σ
(

1

pµ

)
(

1

pµ

) =

√(
c1(pµ − 2)

pµ

)2

+ (c2pµ)
2, (7.1)
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where the first term on the right-hand side represents the effect of multiple scattering,

the second term describes the detector position measurement uncertainties, and p
µ

is given in GeV/c. From the fit to the Z data, the constant c1 was determined to be

0.18, while c2 was found to have a value of 0.003 ± 0.001.

The momentum resolution was also examined in a reconstructed sample of low-

energy fully ����ed Monte Carlo events processed with DØ���� V12.21. In each

momentum bin, σ
(

1

pµ

)
was taken to be the width of the gaussian distribution of the

difference between inverse reconstructed momentum and inverse ������ momentum.

Figure 7.2 depicts the distribution
(

1

p
µ

ISAJET

−

1

p
µ

reco

)
for the first bin. Note that the

shoulder to the left of the central peak is not included in the determination of σ
(

1

pµ

)
.

Further, at low pµ
T
in the lower bins, the central value is shifted significantly away

from zero. The points in Figure 7.3 depict the quotient σ
(

1

pµ

)
/
(

1

pµ

)
, where the

value of the denominator was taken to be the average value of the true inverse ������

momentum in that bin. The solid line shows Equation 7.1 with the parameters from

the data fit. The dashed line represents the same function with a c2 value of 0.008,

and the dotted line denotes a fit to the low energy Monte Carlo points, resulting in a

value for c2 of 0.012. Because the multiple scattering term does not change in these

studies, the resolution will henceforth be denoted by the value of c2 in Equation 7.1.

In this nomenclature, the solid line in Figure 7.3 represents “0.003 smearing.”

7.2 Bayesian Unsmearing

Various methods may be used to unsmear the momentum spectrum. For example, one

method involves building a smearing matrix from reconstructed Monte Carlo events
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Figure 7.2: Plot of ∆
(

1

pµ

)
for bin 1. Note that the shoulder to the left of the gaussian

is not used in the fit.

Figure 7.3: Muon momentum resolution. The stars represent fully reconstructed low

energy ISAJET. The solid line represents the fit to the Run 1A Z data, and the dotted

line depicts a fit to the Monte Carlo.
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that quantifies the migration between reconstructed and “true” momentum bins. In-

verting the normalized smearing matrix and multiplying it by the data distribution

should result in the real muon spectrum. The problem with simple matrix inversion

is that it depends strongly on the measured and reconstructed transverse momen-

tum spectra; instead, an alternative method of unsmearing is examined – Bayesian

unsmearing.

7.2.1 Bayes’ Theorem

Bayesian unsmearing describes a particular technique of unsmearing data based on

Bayes’ Theorem:

P (Ci | E) =
P (E | Ci) · P (Ci)∑nc

l=1
P (E | Cl) · P (Cl)

, (7.2)

where Ci is the ith cause that can produce an effect E. In our case, the Ci’s represent

the real transverse momentum of the muon, and the effect is the measured p
µ

T
; thus,

P (E | Ci) is simply the probability that a muon in a p
µ

T
bin representing E came

from a muon with a real pµ
T
in bin i. This method can be applied for several effects,

or several reconstructed p
µ

T
bins, by noting that

P (Ci | Ej) =
P (Ej | Ci) · P (Ci)∑nc

l=1
P (Ej | Cl) · P (Cl)

, (7.3)

where Ej represents the reconstructed p
µ

T
bin j. Unsmearing the measured p

µ

T
spec-

trum should yield the true p
µ

T
spectrum, or the number of events in each cause bin

n̂(Ci). The number of events in each bin must be given by

n̂(Ci) =

Nj∑

j=1

P (Ci | Ej) · n̂(Ej). (7.4)

The procedure for obtaining n̂(Ci) is as follows:
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1. Select an initial distribution for P0(Ci), the initial guess at the correct un-

smeared momentum distribution, subject to the constraint that

Ni∑

i=1

P0(Ci) = 1. (7.5)

In this analysis, the generated ������ Monte Carlo pµ
T
distribution functions

as the “best” initial guess at the spectrum. This guess also selects the initial

expected number of events (n̂0(Ci) = P0(Ci) ·Nobs).

2. Calculate n̂(Ci) and P (Ci).

3. Perform a χ2 comparison between n̂(Ci) and n̂0(Ci).

4. Replace P0(Ci) with P (Ci), and n̂0(Ci) with n̂(Ci) and restart the process.

After the second iteration, if the χ2 value is small, stop the iteration; otherwise,

return to step 2 and repeat.

Bayesian unsmearing offers many advantages over other unsmearing methods.

First, the Bayesian method is theoretically sound. Second, it should not depend

on the shape of the distribution being unsmeared, should the need arise. Third,

although the method gives the best results if one uses a realistic starting guess, a

satisfactory result can still be obtained from a uniform initial distribution. Last,

Bayesian unsmearing does not require matrix inversion, which fails if the smearing

matrix is singular. For further details on unsmearing using the Bayesian method, the

interested reader is directed to consult G. D’agostini [51].
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7.2.2 Using Monte Carlo to Test the Method

Before the unsmearing procedure is applied to the data pµ
T
distribution, it is tested

on Monte Carlo distributions. A brief exposition of the terms that will be used is

required:

• real distribution — The real distribution refers to the true ������ p
µ

T
distribu-

tion. Bayesian unsmearing attempts to reproduce the real distribution from the

measured distribution. Note that in all tests, each event in the real distribution

must pass many quality cuts as well as the low energy central muon trigger

(��_1_���_��).

• measured distribution — The measured distribution refers to the transverse mo-

mentum spectrum of muons measured in the detector. In the Monte Carlo tests,

the reconstructed spectrum from ����ed and ����ed Monte Carlo serves as

the measured distribution.

• unsmeared distribution — The output of the unsmearing procedure, the un-

smeared distribution is taken to be our best estimate of the true muon trans-

verse momentum spectrum. In the Monte Carlo tests, it is compared with the

real distribution. When the data are unsmeared, the unsmeared distribution is

considered to be the true muon spectrum.

• smearing matrix — The smearing matrix describes the bin-to-bin migration of

events from the real distribution to the measured distribution. It is created

from Monte Carlo events that have been passed through a full simulation of

the DØ muon system. In terms of Bayes’ Theorem, events with true transverse
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momentum in bin i and reconstructed transverse momentum j correspond to

the element P (Ej|Ci).

• unsmearing matrix — The unsmearing matrix, which corresponds to P (Ci | Ej)

in the expressions above, is computed by the Bayesian code and used to obtain

the unsmeared spectrum from the measured one.

Figure 7.4 depicts an example of the unsmearing method. The histogram rep-

resents the real distribution, the stars represent the measured distribution, and the

closed circles represent the unsmeared spectrum. The smearing matrix was gener-

ated from the ����ed Monte Carlo events being unsmeared, so the unsmearing code

reproduces the original spectrum after one iteration. The small error bars on the

difference plot represent only the statistical errors described in the next section. The

p
µ

T
ranges corresponding to each bin are given in Table 5.2.

7.3 Errors on the Unsmearing

Use of the Bayesian method requires correct propagation of not only the statisti-

cal uncertainty on the measured distribution, but also the statistical uncertainty of

the smearing matrix used by the Bayesian code. The statistical uncertainty on the

measured (data) distribution is due to the number of events measured. The other

statistical uncertainty arises from limited Monte Carlo statistics used in constructing

the smearing matrix. Both errors are computed by the code and used to build the co-

variance matrix. Systematic uncertainties associated with the unsmearing procedure

must be evaluated separately.
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Figure 7.4: The measured Monte Carlo distribution has been unsmeared after one
interation.

7.3.1 Systematic Uncertainties

While the Bayesian method unsmears a measured spectrum using the smearing matrix

that produced it, a systematic variation of the input distributions, the smearing

matrix, and the shape of the pµ
T
spectrummust be examined to determine the effect on

the unsmeared results. The following subsections detail the studies of the systematic

errors associated with Bayesian unsmearing.

Use of a Toy Monte Carlo

Because reconstruction of ������ Monte Carlo events is time-consuming and CPU-

intensive, a toy Monte Carlo was written to generate a p
µ

T
distributionmodeled on a fit

to a preliminary measurement of the b-produced muon spectrum from the inclusive

muons channel. For each muon generated, the Monte Carlo calculates a smeared
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momentum using the sigma and mean of the gaussians determined as in Figure 7.2.

Note that the shoulder seen in the reconstructed Monte Carlo is not reproduced in the

toy. Figure 7.5 depicts both the real spectrum and the smeared spectrum produced

by the toy Monte Carlo.

Figure 7.5: The toy Monte Carlo cross section (dashed line) has been smeared with
0.012 smearing and renormalized.

The goal of using the toy Monte Carlo is to understand the effect of a varying

resolution on the unsmearing procedure. The Run 1 data exhibits 0.003 smearing,

while the reconstructed Monte Carlo used to unsmear the momentum distribution

exhibits 0.012 smearing. The toy Monte Carlo allows examination of the difference

in the output of the Bayesian method for these two smearings.

Before examining the difference in the two smearings, it is imperative to ensure

that the toy Monte Carlo, using the same smearing as the reconstructed Monte Carlo,

unsmears the data in the same way. Figure 7.6 depicts this comparison. The toy
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Figure 7.6: The difference between unfolding with the toy MC (0.012 smearing) and
the reconstructed ISAJET.

Figure 7.7: The toy MC is used to build two smearing matrices based on two dif-
ferent resolutions (0.003 and 0.012). The difference between unsmearing for the two
resolutions is shown above.
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reproduces the smearing of the reconstructed ������ fairly well, so the toy Monte

Carlo can be employed to investigate the difference between unsmearing with 0.003

smearing and unsmearing with 0.012 smearing.

First, the toy Monte Carlo is used to build two smearing matrices for use with the

Bayesian code. The code is run with the same initial guess and input distribution

for both the 0.003 smearing and the 0.012 smearing. Figure 7.7 compares the results.

This difference is taken to be the systematic uncertainty due to the difference in

resolutions between the reconstructed Monte Carlo and the data.

Two additional effects must be evaluated to complete the evaluation of potential

errors on the unsmearing due to the resolution. In Figure 7.2, the fully reconstructed

Monte Carlo exhibits both an offset and a shoulder in the difference between the

inverses of real and reconstructed transverse momentum. Because it is not known

whether these effects occur in the data, they must be included in the systematic error

for completeness. The toy Monte Carlo can be used to evaluate the effect of using a

mean of 0 in the computation of the smeared momentum. This difference is depicted

in Figure 7.8. In addition, using the reconstructed Monte Carlo with a cut of 0.1 on
∣∣∣
(

1

p
µ

ISAJET

−

1

p
µ

reco

)∣∣∣ to build the smearing matrix allows examination of the effect of

the shoulder on unsmearing (Figure 7.9). Note that the systematic effect of removing

the offset in the mean when smearing the momentum dominates the systematic error

at low p
µ

T
.

Shape Dependence

The Bayesian technique should depend only on the bin-to-bin migration of the events,

not on the shape of the distribution being unsmeared. How the procedure unsmears
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Figure 7.8: The effect of removing the offset in calculating the smeared momentum.

Figure 7.9: The effect the shoulder on ∆
(

1

pµ

)
.
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spectra that exhibit different shapes must be investigated. To begin with, the toy

Monte Carlo can be employed to examine the effect of weighting the momentum

distribution with a very steep function. Figure 7.10 shows the effect of weighting the

original momentum spectrum by 1/ (pµT − 1.5)3 and renormalizing.

Figure 7.10: The toy MC momentum distribution weighted with a steep function and
renormalized.

The original reconstructed Monte Carlo p
µ

T
spectrum is compared to both the

data and the weighted Monte Carlo spectrum in Figure 7.11. The data histogram

lies between the two sets of points. The assumption is that if the Bayesian code can

unsmear the steep distribution correctly, it can also unsmear the data distribution.

The original reconstructed Monte Carlo is used to build the smearing matrix. The

difference between the real weighted distribution and the unsmeared distribution is

given in Figure 7.12.
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Figure 7.11: Fully reconstructed ISAJET (solid circles) and weighted ISAJET (open
circles). The data (histogram) lies between them.

Figure 7.12: Unsmearing a steeply weighted MC distribution.
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Variation in Initial Guess

While the Bayesian method should provide a reasonable unsmearing of the data given

a completely flat initial spectrum, best results are obtained when the initial guess

approximates the real distribution. When unsmearing, the initial guess is usually

taken to be the real p
µ

T
spectrum from the reconstructed Monte Carlo. Variation of

the initial guess to steeper (Figure 7.13) and shallower (Figure 7.14) distributions

yields a slightly different unsmeared spectrum. As an example, the steep initial guess

is provided by the points in Figure 7.11.

Figure 7.13: Effect of the initial guess on the unsmearing.

7.3.2 Combination of the Errors

The contributions to the total systematic error as a function of muon transverse

momentum bin are shown in Table 7.1. The contributions to the total uncertainty

come from variation of the initial guess to steeper (∆0

steep) and shallower (∆0

shallow)
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Figure 7.14: The difference between unsmearing with a more shallow initial guess and
the real MC distribution.

spectra as well as the uncertainty associated with unsmearing a more steeply-falling

true transverse momentum spectrum (∆steep). The total systematic also includes

uncertainties due to the difference between the toy Monte Carlo and smeared ������

(∆res1) and the use of different resolutions in the Monte Carlo compared to that

measured in samples of Run 1A data (∆res2). The uncertainty accounts also for

effects seen in the Monte Carlo that may or may not be in the data sample (∆off ,

∆shoul).

All contributions to the uncertainty on the unsmearing procedure are added in

quadrature (total systematic error) and are plotted as a function of pµ
T
in Figure 7.15.

The large error on the outermost points is dominated at the low end by the mean shift

in the resolution function, and at the high end by potential variations in resolution.
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p
µ

T

(
GeV

c

)
∆0

steep ∆0

shallow ∆res1 ∆res2 ∆steep ∆off ∆shoul ∆syst

4 − 4.5 8.2 1.0 6.9 3.1 12 8.2 1.5 17
4.5 − 5.5 1.7 0.9 0.2 2.5 5.1 8.7 1.2 11
5.5 − 6.5 1.6 0.4 7.6 3.8 1.9 8.7 0.5 10
6.5 − 9 1.8 1.0 7.9 1.5 5.4 4.6 0.9 7.6
9 − 12 5.3 0.5 2.1 6.6 12 0.6 3.1 15
12 − 15 1.9 2.3 20 35 22 3.4 3.6 42

Table 7.1: Contributions to the unsmearing factor systematic (expressed in percent).

Figure 7.15: The combined systematic error on the unfolding. The first two bins and
the last bin are not used to calculate the final results.
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p
µ

T

(
GeV

c

)
funs ∆stat ∆syst ∆total

4− 4.5 1.17 9.2 17 19
4.5− 5.5 .91 9.4 11 14
5.5− 6.5 .90 11 10 15
6.5− 9 .85 13 8 15
9− 12 .67 23 15 27
12− 15 .46 37 43 57

Table 7.2: The unsmearing correction obtained using the Bayesian unfolding proce-
dure along with uncertainties (expressed in percent).

7.4 Unsmearing the Data

Using the Bayesian technique describe in the preceding sections, the data spectrum

has been unsmeared (Figure 7.16). The distribution unsmears as expected physically;

the muon transverse momentum spectrum becomes steeper and softer. In the figure,

the spectrum has been divided by the width of the transverse momentum bins. Figure

7.17 shows the ratio of the two distributions. This ratio, called the unsmearing factor

or funs, is the correction factor applied to the data distribution to make final cross

sections. The unsmearing factors as a function of muon transverse momentum bin

are shown in Table 7.2. Only the systematic uncertainty shown is used to compute

the systematic uncertainties on the final cross section.

As a cross-check to the unsmearing factor, the steeply weighted spectrum from

Figure 7.12 was smeared. The ratio of the real spectrum to the smeared spectrum is

shown with the data in Figure 7.17. This ratio is in agreement within errors to the

unsmearing factor obtained using the Bayesian technique in the data.
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Figure 7.16: The muon transverse momentum spectrum in the data has been un-
smeared using Bayes’ method. Only statistical errors propagated through the un-
smearing matrix are shown.
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Figure 7.17: The unsmearing correction to the data obtained with Bayes’ method.
The MC points come from the ratio of real to smeared spectra for a steeply weighted
distribution.
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CHAPTER 8

CROSS SECTIONS

With the factors obtained using the methods described in the preceding chapters, the

b-quark produced muon cross section and the bottom quark production cross section

can be obtained. The muon cross section presented in this section is compared to the

next-to-leading order (NLO) QCD produced by 	
���� Monte Carlo. The bottom

quark production cross section is compared to the direct calculation of the Mangano,

Nason, and Ridolfi [15].

All factors used to compute the bottom-produced muon cross section are given

in Table 8.1. The systematic errors contributing to the uncertainty on the measured

b-produced muon cross section (Figure 8.1) are listed in Table 8.2. Values for both the

muon and bottom quark cross sections are listed in Table 8.4. Finally, the systematic

error on the bottom quark production cross section (Figure 8.4) is given in Table 8.3.

8.1 Differential b-Produced Muon Cross Section

The differential muon cross section is obtained from the data using the expression

dσbµ

dp
µ

T

=
1

∆pµ
T
∆η

·
Nµ · fNC · fb · funs
Aφ · ε ·

∫
L · dt

, (8.1)

where Nµ represents the number of observed muons, fNC is the fraction of muons

coming from non-cosmic sources (Figure 6.5), fb is the fraction of muons originating

from the decay of a bottom quark (Figure 6.19), and funs is the unsmearing factor

from Figure 7.17. The correction for the azimuthal acceptance is denoted Aφ = 1/4.5,
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pµ
T
(GeV/c) Nµ fNC fb funs

∫
L · dt

(
1

cm2s

)
ε Aφ

4 − 4.5 229 .99 .46 1.17 364 .07 .22
4.5 − 5.5 295 .98 .47 .91 364 .094 .22
5.5 − 6.5 172 .98 .46 .90 364 .13 .22
6.5 − 9 163 .97 .52 .85 364 .14 .22
9 − 12 57 .96 .55 .67 364 .17 .22
12 − 15 20 .92 .55 .46 364 .22 .22

Table 8.1: Factors used to compute the muon cross section.

while the product of efficiencies from Figure 5.12 is shown in Equation 8.1 as ε. The

expression is also scaled by the integrated luminosity
(∫

L · dt
)
, the pseudorapidity

region of interest (∆η = 1.6), and the pµ
T
bin width (∆pµ

T
). Table 8.1 summarizes

the values of the various factors, and the values for the differential b-produced muon

cross section are given in Table 8.4.

8.1.1 Systematic Uncertainties on the Muon Cross Section

The systematic uncertainties on the various components that are used to compute

the b-produced muon cross section are summarized in Table 8.2. All uncertainties

are taken to be uncorrelated and are added in quadrature to obtain the total system-

atic uncertainty (∆tot). The uncertainties on the background subtraction techniques

(taken from Chapter 6) are denoted ∆fNC and ∆fb for the uncertainties on the frac-

tion of non-cosmic muons and the b-fraction respectively. The uncertainty on the

unsmearing (Chapter 7) is denoted ∆funs, and the uncertainty on the total overall

efficiency (Chapter 5) is denoted ∆ε. A detailed description of the determination of

the 3% uncertainty on the luminosity, labeled ∆L, can be obtained from [52] and

[53]. An additional uncertainty on the measured muon cross section due to the jet

energy scale
(
∆E

jet

T

)
merits further discussion here.
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p
µ

T
(GeV/c) ∆fNC ∆fb ∆funs ∆L ∆ε ∆E

jet

T ∆total

4 − 4.5 0.2 10 17 3 18 19.7 34
4.5 − 5.5 0.3 9.2 11 3 10 19.7 27
5.5 − 6.5 0.3 11 10 3 13 19.7 28
6.5 − 9 0.3 9.7 8 3 10 19.7 26
9 − 12 0.4 14 15 3 12 19.7 31
12 − 15 0.8 22 43 3 24 19.7 57

Table 8.2: Systematic errors contributing to the uncertainty on the muon cross sec-
tion. All errors are expressed in percent.

Because the transverse energy of the jet is used in the selection of the sample of

muons with associated jets, an incorrect jet energy scale can introduce an uncertainty

on the number of muons (Nµ)measured in each pµ
T
bin. To examine the effect of the jet

energy scale on the final muon cross section, the Ejet

T threshold for muon selection was

varied to simulate a 10% variation in the jet energy scale. The fractional difference

in the number of muons selected in each bin is taken to be the uncertainty on the

bottom-produced muon cross section due to the uncertainty in the jet energy scale.

An uncertainty of approximately ∆E
jet

T = 20% (flat in p
µ

T
) is added in quadrature

with the other uncertainties on the muon cross section.

8.1.2 Theoretical Prediction and Uncertainties

The central value of the next-to-leading order QCD calculation was obtained using

the 	
���� Monte Carlo generator. 	
����, an implementation of the NLO MNR

calculation, is discussed in more detail in Section 3.1.6 and in reference [25]. The

central value of the prediction was obtained using the following parameters:

• The mass of the bottom quark (pole mass) is set to mb = 4.75 GeV/c2.
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• The factorization and renormalization scales are set equal and assigned a value

of µ = µ
0
=
√
m2

b
+ p2

T
.

• The QCD scales, Λ4 and Λ5, are taken to be 344 and 237 MeV respectively.

• The Peterson fragmentation parameter takes a value εb = 0.006.

• The parton distribution function MRSR2 is chosen for comparison because of

an enhancement of bottom production predicted over MRSA’.

The uncertainties on the prediction are obtained by varying the mass of the bottom

quark between 4.5 and 5.0 GeV/c2 and varying the factorization and renormalization

scales between µ
0
/2 and 2µ

0
. In addition, the parton distribution function was varied

to MRSA’, and the Peterson fragmentation parameter εb between 0.003 and 0.009.

The uncertainty also includes contributions from varying the branching fraction and

the decay table used. Interested readers are directed to consult [25] for further details

on the uncertainty on the muon cross section.

8.1.3 Comparison of Data to Theoretical Predictions

The differential b-produced muon cross section obtained from the data and the 	
�-

��� theoretical prediction are shown in Figure 8.1. The inner error bars represent

the statistical error
(
1/
√
Nµ

)
, while the larger error bars represent the total system-

atic and statistical uncertainties added in quadrature. The data exhibit qualitative

agreement in shape with the NLO QCD predictions, but lie systematically above the

central value of the theoretical prediction. The values and uncertainties plotted for

the measured muon cross section are presented in Table 8.4. To facilitate comparison
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with theory, Figure 8.2 shows the ratio data/theory. The error band, as well as the

measured points and associated errors, have been simply divided by the MNR pre-

diction. A fit of a constant to the ratio points shown in Figure 8.2 yields a value of

2.9± 0.4.

8.2 Inclusive b-quark Production Cross Section

The inclusive bottom quark production cross section is calculated from the data using

the expression

σ
b
(
p
b
T
> p

min

T

)
=

1

2
σ
µ

b (p
µ
1

T
, p
µ
2

T
)
σbMC

σµMC

∆η, (8.2)

where σµb (p
µ1
T , p

µ2
T ) is the measured muon cross section from Equation 8.1 integrated

between p
µ
1

T
< pµ

T
< p

µ
2

T
, σbMC represents the total inclusive b-quark cross section

for pb
T
> pmin

T
, and σµMC is the cross section for production of bottom quarks that

decay to muons within the pµ
T
interval with pb

T
> pmin

T
. The quantity pmin

T
is defined

as that value of the b-quark pT for which 90% of the accepted b-quarks (i.e., b → µ,

|ηµ| < 0.8, pµ1
T

< pµ
T
< pµ2

T
) have transverse momentum greater than pmin

T
(Figure 8.3).

The factor of two corrects the data, which contains muons originating from both b

and b decays, to a cross section of bottom quarks only. This method of representing

the cross section is the method employed by UA1 [5].

8.2.1 Systematic Uncertainties on the Bottom Quark Production Cross

Section

The systematic uncertainties propagated through to the final bottom quark produc-

tion cross section are shown in Table 8.3. The factor σb/σµ used to convert from the
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Inner bars - statistical errors only
Outer bars - all errors in quadrature
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Figure 8.1: The bottom quark produced muon cross section per unit η for muons
with |η| < 0.8 compared to HVQJET predictions. The uncertainties on the mea-
sured points are statistical (inner) and statistical and systematic added in quadrature
(outer).
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Figure 8.2: The ratio data/theory for the b-quark produced muon cross section as a
function of muon transverse momentum. All quantities from the previous plot have
been divided by the central value of the NLO prediction. Overall, the data lie a factor
of 2.9 above the theoretical prediction.
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Figure 8.3: Determination of pmin
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(see text for description).

muon cross section to the bottom quark cross section also introduces uncertainties.

The quantities varied to obtain the uncertainty on the conversion factors (∆σb/σµ)

include the b mass (∼ 4%), the µ scale (∼ 2%), the parton distribution function

(∼ 2%), the b → µ branching fraction (∼ 4%), the Peterson fragmentation parame-

ter (∼ 10%), and the B meson decay table (∼ 28%). The parameter variations are

the same as those used in the determination of the uncertainties on the NLO QCD

calculation of the b-produced muon cross section. Further details of the uncertainty

calculation can also be found in [25]. The total uncertainty on the bottom quark pro-

duction cross section is obtained by combining the relative systematic uncertainties

on the b-produced muon cross section and the uncertainties on the conversion factors

in quadrature.
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pµ
T
(GeV/c) pmin

T

(
GeV

c

)
∆total ∆σb/σµ ∆σb

4 − 4.5 5.5 34 30 45
4.5 − 5.5 6.6 27 30 40
5.5 − 6.5 8 28 30 41
6.5 − 9 10.1 26 30 39
9 − 12 13.4 31 30 43
12 − 15 19 57 30 64

Table 8.3: Uncertainty on the final bottom quark cross section due to the systematic
uncertainty in the muon cross section and the conversion factors. All errors are
expressed in percent.

8.2.2 NLO QCD Prediction and Uncertainties

The theoretical calculation of the bottom quark production cross section is somewhat

simpler than that for the b-produced muon cross section, because there are no uncer-

tainties introduced by decaying the produced b-quark to a muon. The central value

of the NLO prediction for the bottom quark production cross section was obtained

using the 	
���� Monte Carlo event generator and the MRSR2 parton distribution

function. In addition, we use a bottom quark mass mb = 4.75 GeV/c2 (pole mass)

and a factorization/renormalization scale of µ
0
=
√
m2

b + p2
T
.

The uncertainties on the theoretical calculation of the bottom quark production

cross section shown in Figure 8.4 originate from varying the mass of the bottom quark

and the factorization and renormalization scale. The upper curve is obtained with

the values mb = 4.5 GeV/c2 and µ = µ
0
/2, while the lower uncertainty is obtained

using mb = 4.5 GeV/c2 and µ = 2µ
0
.

8.2.3 Comparison of Data to Theoretical Predictions

The bottom quark production cross section obtained from the data is compared to the

	
���� prediction in Figure 8.4. The inner error bars represent the statistical error
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p
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T
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> pmin

T
, |y| < 1

)
(
GeV

c

) (
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c

) [
nb·

(
GeV

c

)
−1
]

(nb)

4− 4.5 5.5 26.8± 1.8± 9.0 327 ± 98.1 3504± 231 ± 1581

4.5− 5.5 6.6 10.1± .59± 2.7 226 ± 67.8 1839 ± 107 ± 737

5.5− 6.5 8 4.06± .31± 1.1 321 ± 96.3 1045 ± 78 ± 428

6.5− 9 10.1 1.53± .12± .39 193 ± 57.9 590 ± 46± 233

9− 12 13.4 .303 ± .040± .09 304 ± 91.2 221 ± 29 ± 95

12− 15 19 .055 ± .012± .031 345 ± 103.5 45 ± 10± 29

Table 8.4: A summary of the cross section results. For the cross section results, the
first error is statistical; the second is systematic.

(
1/
√
Nµ

)
, while the larger error bars represent the total systematic and statistical

uncertainties added in quadrature. The data exhibit qualitative agreement in shape

with the NLO QCD predictions, but lie systematically above the central value of the

theoretical prediction. The values and uncertainties plotted for the measured bottom

quark production cross section are presented in Table 8.4. To facilitate comparison

with theory, Fig. 8.5 shows the ratio data/theory for the bottom quark cross section.

The error band, as well as the measured points and associated errors, have been

simply divided by the MNR prediction. A fit of a constant to the ratio points shown

in Figure 8.5 yields a value of 2.4 ± 0.5.

A careful reader will notice the discrepancy between the excess observed in the

muon cross section and the excess found in the bottom quark production cross section.

While the bottom cross section is compared directly to the MNR calculation, the

muon cross section is compared to the 	
���� prediction. 	
���� predicts a smaller

bottom quark production cross section than the actual MNR calculation by 10 to 20

percent [25]. The effect cancels in the ratio σb/σµ, however, so our comparison to the

bottom quark cross section is the value we report.
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Figure 8.4: The inclusive bottom quark production cross section for |yb| < 1 at√
s = 630 GeV compared to NLO QCD predictions. The uncertainties on the mea-

sured points are statistical (inner) and statistical and systematic added in quadrature
(outer). The uncertainty on the HVQJET predictions arise from variation of the b-
quark mass and the factorization and renormalization scales.
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Figure 8.5: The ratio data/theory for the b-quark production cross section as a func-
tion of pmin

T
. All quantities from the previous plot have been divided by the central

value of the NLO prediction. Overall, the data lie a factor of 2.4 above the theoretical
prediction.
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8.3 Summary

This chapter summarizes the measurement of the bottom-produced muon cross sec-

tion and the inclusive bottom quark production cross section. Both measurements

exhibit qualitative shape agreement with NLO QCD predictions. The measured data,

however, exhibit a systematic normalization excess above the predictions. In the next

chapter, these measurements are compared to other measurements, both from the in-

clusive muon analysis at DØ and measurements made by other experiments.
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CHAPTER 9

DISCUSSION OF RESULTS

This dissertation provides a measurement of bottom quark production at a center of

mass energy of
√
s = 630 GeV. The data, collected using the DØ detector at the

Tevatron pp collider at Fermilab in December of 1995, correspond to an integrated

luminosity of 364 nb−1.

The muon sample used in this analysis was collected using a trigger requiring

a single central muon with transverse momentum greater than 3 GeV/c. In addi-

tion, each event was subjected to a set of offline selection criteria designed to enrich

the muon sample in muons originating from the decay of a b-quark and reduce the

background due to cosmic rays and detector noise. The requirement of a nearby jet

with transverse energy greater than 12 GeV removes contributions from Υ decay,

Drell-Yan production, and cosmic ray muon contamination, because these processes

generally produce isolated muons. The jet requirement also allows a determination

of the fraction of muons from bottom quark decays from the data sample.

The contribution of cosmic rays to the observed number of muons is estimated

using timing information from scintillators installed during the 1994-95 Tevatron Col-

lider run. The difference between the measured and expected times-of-flight through

the detector is used to determine the amount of cosmic contamination as a function

of muon transverse momentum.

Requiring the muon to be associated with a jet with ET > 12 GeV jet also provides

a way of discriminating b-produced muons from those originating from π/K in-flight
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decay or the decay of a charm quark. The distribution of the muon momentum

relative to the jet axis
(
prel
T

)
is used to separate the bottom produced muon signal

from the charm and π/K background. The distributions of signal and background

are used as input to a maximum-likelihood fit that determines the fraction of muons

in the sample coming from bottom decays. The b-fraction obtained in this manner is

compatible with ������ Monte Carlo predictions for heavy quark and π/K decay.

After obtaining the background-subtracted muon spectrum, the spectrum is un-

smeared for detector resolution effects using a Bayesian statistical technique. After

obtaining the real b-produced muon transverse momentum spectrum, the spectrum

is corrected for selection and trigger efficiencies and acceptances, as well as the in-

tegrated luminosity. The measured b-produced muon cross section is then compared

with NLO QCD predictions. The measured spectrum exhibits good qualitative shape

agreement with theoretical predictions. The normalization exceeds the predictions,

however, by a factor of 2.9± 0.4.

To obtain the bottom quark production cross section, 	
����Monte Carlo is used

to generate factors σbMC/σ
µ

MC used to convert the b-produced differential muon cross

section to the b-quark cross section, σb
(
pb
T
> pmin

T
, |y| < 1.0

)
. The quantity pmin

T
is

defined as the value of the b-quark pT for which 90% of the b-quarks producing muons

passing kinematic selection criteria have a transverse momentum greater than pmin
T

.

The bottom quark production cross section also exhibits good qualitative agreement

with NLO predictions, while the excess for the bottom quark production cross section

normalization is 2.4± 0.5. The following sections discuss this result in the context of

other measurements of bottom quark production.
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9.1 Comparison to the Inclusive Muon Analysis

DØ has also made a measurement of the bottom quark production cross section at

√
s = 630 GeV using a sample of single muons [45]. This section serves to briefly

describe the analysis and compare the results to those presented in Chapter 8.

Significantly more cosmic ray muon contamination is present in the single muon

analysis, because the muons are not associated with a jet. The cosmic ray muon

background is removed using scintillator timing information, similar to the procedure

outlined in in Chapter 6. The remainder of the background selection is handled quite

differently. The contribution from pion and kaon decay is first removed using ������

Monte Carlo tuned to CDF and UA1 charged particle data, and the b-fraction is taken

from ������ ������ Monte Carlo.

The unsmearing of the muon momentum spectrum is obtained by taking the ratio

of generated to reconstructed muon pT spectra. The unsmearing factor obtained in

this manner is compatible within errors to the unsmearing factor obtained using the

Bayesian method outlined in Chapter 7.

Once the bottom-produced muon cross section is obtained for the single muon

analysis, factors are obtained using 	
���� to convert the muon cross section to an

inclusive bottom quark production cross section. The procedure is identical to that

described in Chapter 8. The bottom quark production cross section for the single

muon analysis is shown with the results from Chapter 8 in Figure 9.1. The two

measurements agree quite well over the range of bottom quark pT sampled.
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Figure 9.1: Inclusive bottom quark production cross section for both the single muon
analysis and the muon plus jets analysis. The inner error bars are statistical. The
outer error bars are statistical and systematic added in quadrature. The NLO QCD
prediction and its associated errors are described in detail in Chapter 8.
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9.2 Comparison to UA1 and CDF Measurements

Other measurements of the bottom quark production cross section at
√
s = 630

GeV have been made by the UA1 collaboration [54] and, more recently, the CDF

collaboration [55]. This section serves to compare the results of all three collaborations

on a single plot.

An analysis of 4.7 pb−1 of muon data recorded by the UA1 collaboration during

1988-89 at a center of mass energy of
√
s = 630 GeV exhibited somewhat better

agreement with theoretical predictions available at the time. These measurements

come from an analysis of bottom production via four independent decay channels,

including muon-jet data, and use a similar technique of signal extraction using the

variable prel
T
. The UA1 muon-jet data sample requires a muon with a transverse

momentum above 10 GeV/c and a jet ET greater than 10 GeV.

Because UA1measures the b-quark production cross section for |yb| < 1.5, the UA1

measurements can not be directly compared to the results of this analysis. Instead, the

data presented in the preceding sections must be corrected for the rapidity difference

before a fair comparison may be made. First, 	
���� events are generated to obtain

the cross section predictions for σb
(
pb
T
> pmin

T
, |y| < 1.0

)
and σb

(
pb
T
> pmin

T
, |y| < 1.5

)

as a function of pmin
T

. The ratio is then fit with a third degree polynomial (Figure

9.2) and evaluated at each pmin

T
value to obtain a multiplicative factor f1.5/1.0.

The CDF collaboration at Fermilab has also measured the inclusive bottom quark

production cross section at 630 GeV. They use a sample of muons with transverse

momenta above 6.2 GeV/c. Because CDF has a central magnetic field and silicon

vertex detector, no jets are required in the sample. CDF exploits the relatively long
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Figure 9.2: MNR predictions for the ratio of bottom production with |yb| < 1.5 to
that with |yb| < 1.0. The lines show the evaluated values for the corresponding values
of pmin

T
.
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lifetime of the bottom quark and performs impact parameter fits to determine their

bottom quark signal. CDF corrects their measurement to correspond to the same

rapidity range as the UA1 measurement.

In Figure 9.3, the bottom quark production cross section recomputed using the

rapidity correction (presented in Table 9.1) is directly compared to both the UA1

and CDF measurements of the inclusive bottom quark production cross section at

√
s = 630 GeV. The MNR prediction shown in the figure is the 	
���� prediction

for |yb| < 1.5. The uncertainty on the theoretical prediction is estimated varying

the mass of the bottom quark and the factorization and renormalization scales as in

Chapter 8.

The DØmuon plus jets measurement is in good agreement with the CDFmeasure-

ment; both Tevatron measurements lie approximately a factor of 2.5 above the central

value of the NLO QCD predictions. The central values of the UA1 measurement lie

along the upper uncertainty band on the prediction. While the measurements agree

within error, the difference in the central values deserves comment here.

The discrepancy between the UA1 measurements and the Tevatron measurements

can be explained at least in part by recent experimental data on B hadron decays

made by the CLEO collaboration. When the most recent measurements are included

in theoretical predictions, the cross section for muons with p
µ
T
> 3.0 GeV/c is reduced

by 40%. This modification has the effect of inflating the conversion factors σbMC/σ
µ
MC

by about 60%. The increase in conversion factors would tend to increase the UA1

measurement of the bottom quark production cross section. It is not simply enough

to multiply the UA1 measured points by a factor of 1.6, however, because different

measurement channels may be affected differently. In summary, then, we contend
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pmin

T
σb

(
pb
T
> pmin

T
, |y| < 1

)
f1.5/1.0 σb

(
pb
T
> pmin

T
, |y| < 1.5

)
(
GeV
c

)
(nb) (nb)

5.5 3504± 231± 1614 1.399 4901 ± 323 ± 2257

6.6 1839 ± 107 ± 757 1.391 2559 ± 149 ± 1053

8 1045 ± 78± 444 1.382 1445 ± 110 ± 614

10.1 590 ± 46± 245 1.368 807 ± 63± 336

13.4 221 ± 29± 108 1.345 298 ± 39± 146

19 45 ± 10± 34 1.306 59 ± 13± 44

Table 9.1: A summary of the cross section results. The first error is statistical; the
second is systematic.

that all measurements at 630 GeV agree within errors.

9.3 Bottom Quark Production Cross Section at 1.8 TeV

The bottom quark production cross section has also been measured in pp collisions at

the Tevatron for a center-of-mass energy
√
s = 1.8 TeV. DØmeasurements in both the

inclusive muon and the dimuon channel are shown in Figure 9.4. Both measurements

are made for |yb| < 1.0 using muons in the central region of the detector. As in the

630 GeV analyses, the cross sections for both data samples agree in shape with the

next-to-leading order QCD predictions, but exceed the central value of the theory by

a factor of 2.5.

The observed excess suggests that while the absolute normalization predicted by

the MNR calculation does not describe inclusive bottom quark production as a func-

tion of pmin

T
, the energy dependence may be correctly predicted by the theory. This

observation also suggests a natural extension to this analysis: a measurement of the

energy dependence of the bottom quark production cross section.
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Figure 9.3: Measurement of the bottom quark production cross section for
√
s = 630

GeV and |yb| < 1.5 for DØ, CDF, and UA1.
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Figure 9.4: The bottom quark production cross section for
√
s = 1.8 TeV in the

dimuon and inclusive muon channels. The theoretical curve shown is the MNR pre-
diction from HVQJET.
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9.3.1 Energy Dependence of the Bottom Quark Production

A natural extension to the analysis presented in this dissertation would involve mea-

suring the bottom quark production cross section using a sample of muons plus as-

sociated jets obtained at a center-of-mass energy of 1.8 TeV. Such a measurement

permits a precision study of the energy dependence of bottom production. In the

ratio of 630 and 1800 GeV cross sections, completely and partially correlated sys-

tematic uncertainties can cancel, reducing the overall systematic uncertainty on the

ratio. This measurement has already been performed for the inclusive muons analysis

at DØ, and is shown with a similar measurement for CDF in Figure 9.5. The mea-

sured ratio of cross section agrees well with the central value of the NLO predictions

and the CDF measurement, although no errors have been cancelled in this plot.

9.4 Current State of Theoretical Calculations

The inclusive bottom quark production cross section, both at 1.8 TeV and 630 GeV,

is measured to be a factor of 2.5 higher than NLO calculations of perturbative QCD.

This discrepancy is well established and has plagued heavy quark theorists for over

ten years.

Naively, one might expect that perhaps a NNLO (next-to-next-to-leading order)

calculation might help resolve the discrepancy between experiment and theory, be-

cause in the absence of significant higher order corrections to the cross section, the

choice of scale should be a free parameter. A full NNLO QCD calculation for bottom

quark production, however, is currently unavailable.

The answer does not lie in the choice of parton distribution function, either.
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Figure 9.5: The ratio σb
630

/σb
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for the single muon analysis. The data exhibit good
agreement with the CDF measurement. The measurement also agrees well with the
central value of the NLO QCD prediction.
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Calculations of the effect of varying the parton distribution function [25] suggest that,

within the choices that best describe current experimental data from other sources,

one observes at most a 20% variation in the measured cross section.

Furthermore, a measurement of forward bottom quark production [57] made at

DØ using muons detected in the rapidity range 2.4 < |ηµ| < 3.2 indicates an excess of

a factor of 4 over central theoretical predictions (Figure 9.6). No phenomenon of per-

turbative origin (higher order corrections, for example) can explain this discrepancy

[56].

A study of b-quark jets at DØ, the results of which are still preliminary and not

publicly available, suggest that at larger values of b-quark pT, theory and experiment

may converge (Figure 9.7). If the results are correct, the discrepancy between theory

and experiment could be an artifact of trying to predict the cross section at transverse

momentum values that are too low for the theory. Run II of the Tevatron, scheduled

to begin in early 2001, should increase the statistics and extend the reach of this

measurement in bottom quark pT to allow a more definite statement to be made.

9.5 Summary and Future Prospects

The measurement of the inclusive bottom quark production cross section at
√
s = 630

GeV presented in this thesis agrees with both the UA1 and CDF measurements. The

overall shape of the cross section agrees well with that predicted by the NLO MNR

calculation. The normalization differs by roughly a factor of 2.5, compatible with

the excess observed at 1800 GeV. No satisfactory explanation currently exists for this

normalization discrepancy. This final section presents a look to the future, with an
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Figure 9.6: DØmeasurements of rapidity dependence of the bottom quark production
cross section at

√
s = 1.8 TeV. The curves shown in the figure are the HVQJET

predictions of the NLO QCD calculation.
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Figure 9.7: Preliminary measurement of the bottom quark production cross section
using b-jets at

√
s = 1.8 TeV. The figure also serves to compare Tevatron measure-

ments of bottom quark production.
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emphasis on bottom quark physics at DØ.

9.5.1 Tevatron, Take Two

The Fermilab Tevatron is currently scheduled to begin running in collider mode for

data taking sometime in November 2001. During this running period, called Run II,

the Tevatron will operate at a center-of-mass energy of 2 TeV with an instantaneous

luminosity of 2× 10
32 cm−2s−1 (implying the production of 1011 bb pairs per year of

operation). The DØ collaboration is currently in an upgrade phase, preparing for the

start of Run II. The upgraded DØ detector will be better suited to making precision

bottom quark measurements.

First, the upgraded DØ detector will have a central magnetic field. A 2 tesla

solenoid, combined with all new tracking in the central detector, will provide improved

particle momentum resolution for all charged particles. From the value of the field

integral and the precision provided by the central tracking detectors, the momentum

resolution should be [58]:

∆pT
p2
T

= 0.002, (9.1)

thereby decreasing the uncertainty in the momentum measurement and reducing the

systematic error associate with muon momenum spectrum unsmearing.

Second, DØ is installing a silicon vertex detector around the interaction region.

The vertex detector, consisting of silicon disks and barrels, will provide coverage for

particles out to |η| < 3. The silicon vertex detector will allow a precise determination

of secondary vertex position to 10 µm in x − y, and 30 µm in z. Knowledge of the

secondary vertex position allows bottom quark tagging without the use of the variable

prel
T
, by exploiting the relatively long lifetime of the B hadrons.
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Last, the DØ upgrade includes a vastly improved muon system. Triggering in the

central muon system (|η| < 1) is aided by the addition of scintillation counters, and

the efficiency of the central tracking chambers will be maintained. In the forward

(1 < |η| < 2.5) muon system, improved tracking will be realized with the addition of

1 cm × 1 cm tracking chambers. In the forward region, triggering will be improved

with three layers of pixel scintillator counters (segmentation 0.1× 4.5◦ in η − φ). All

new triggering electronics will enable collection of very large single and dimuon data

sets for use in bottom quark studies.

9.5.2 Future Measurements

The Run II physics program will continue to include tests of perturbative QCD calcu-

lations such as the one presented in this dissertation. DØ will measure the inclusive

bottom quark production cross section in a variety of channels (J/ψ, single leptons,

dimuons) as well as correlations (dilepton ∆φ, muon+jet, forward-central), which are

sensitive to various NLO production mechanisms. The upgraded detector, however,

facilitates a variety of new bottom quark measurements at DØ.

In Run II, the Tevatron will produce all species of B hadrons, including the Bc, re-

cently observed by the CDF collaboration [59]. DØ will be able to do B spectroscopy

to identify the various flavors of B mesons, providing measurements of exclusive bot-

tom quark decay modes.

With improved particle identification and momentum resolution, DØ will also

be able to directly probe the kinematics of the B mesons produced, facilitating a

measurement of the differential bottom quark production cross section as a function

of b-jet ET. Such a measurement can be converted using NLO QCD predictions into
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an integrated inclusive production cross section that probes large values of bottom

quark pT, perhaps out to 100 GeV/c.

In addition to the various aspects of bottom quark production, DØ will also have

the ability to make measurements of mixing in the neutral B-meson system and

constrain the CKM matrix parameters. For example, DØ is expected to reduce the

uncertainty on sin (2β) to σ (sin (2β)) ∼ 0.07.

Run II of the Fermilab Tevatron presents a great opportunity for studying bottom

quark physics. Perhaps precision tests of perturbative QCDmade at DØwill elucidate

the discrepancy between the current experimental data and theoretical predictions in

the measurement of the inclusive bottom quark production cross section.
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APPENDIX A

THE DØ COORDINATE SYSTEM

The DØ experiment uses a right-handed coordinate system defined with the +z-axis

in the direction of the proton beam, the +y-axis perpendicular to the plane of the

Tevatron ring, and the +x-axis in the plane of the Tevatron, pointing outward from

the center of the ring. The coordinate system was designed so that (x, y, z) = (0,0, 0)

is at the center of the detector.

Often more convenient coordinate systems are used. At DØ, cylindrical (r,φ, z)

and spherical (r, φ, θ) coordinates can be used as well. In cylindrical coordinates, the

z-coordinate remains the same, while r =
√

x2 + y2 and φ is the azimuthal angle so

that φ = 0 lies along the +x-axis. In spherical coordinates, r =
√

x2 + y2 + z2, φ is

the azimuthal angle defined above, and θ describes the polar angle, oriented so θ = 0

along the direction of the proton beam (+z-axis) and θ = π/2 along the +y-axis.

Often, instead of the polar angle, it is beneficial to use the pseudorapidity, η,

defined as

η = − ln tan
θ

2
(A.1)

The pseudorapidity approximates the true rapidity, y, defined as

y =
1

2
ln

E + pz
E − pz

(A.2)

in the limit that the mass is vanishingly small compared to the energy (m/E → 0,

where m is the invariant mass m2 = E2
− p2). Because differences in rapidity are
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Lorentz-invariant quantities, pseudorapidity is often used as a substitute for the polar

angle, θ.

In addition to the coordinates introduced here, transverse quantities are often

used. Because the momentum of a colliding particle perpendicular (transverse) to the

beam is small compared to the longitudinal momentum, we can apply conservation of

momentum and energy in the transverse plane. To obtain the transverse momentum,

one projects the momentum vector onto a plane perpendicular to the beam axis using

the polar angle:

pT = p sin θ (A.3)

In the case of jets, one often defines the ‘transverse energy’ of the jet. When treated

as a vector, the direction of ET should be taken as that of the pT vector.
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APPENDIX B

ERROR PROPAGATION

Understanding the errors associated with any given measurement can be the most

difficult, but necessary, component of the analysis. It is often as important to know

the uncertainty on a measurement as knowing the central value of the quantity being

measured. This appendix begins with a brief, general introduction to uncertainties

and subsequently touches on the types of error analysis involved in this analysis.

B.1 Propagation of Errors and the Covariance Matrix

The general formula for propagating errors for f (a, b, c...) is given by

(δf)2 =

(
∂f

∂a

)2

(δa)2 +

(
∂f

∂b

)2

(δb)2 +

(
∂f

∂c

)2

(δc)2 + ... (B.1)

+2ρab

(
∂f

∂a

)(
∂f

∂b

)
δaδb+ 2ρac

(
∂f

∂a

)(
∂f

∂c

)
δaδc

+2ρbc

(
∂f

∂b

)(
∂f

∂c

)
δbδc+ ...,

where δa represents the one sigma variances in the parameters and ρij represents the

correlation between parameters i and j. Figure B.1 gives a graphic description of

correlation. When two parameters a and b are completely correlated
(
ρij = 1

)
, a one

sigma shift in the mean value of a requires a one sigma shift in the mean value of b

in the same direction. Complete anticorrelation
(
ρij = −1

)
implies that if a changes

by one sigma, b must change by one sigma in the opposite direction. If the variables

are uncorrelated
(
ρij = 0

)
, Equation B.1 simplifies significantly to

(δf)2 =

(
∂f

∂a

)2

(δa)2 +

(
∂f

∂b

)2

(δb)2 +

(
∂f

∂c

)2

(δc)2 + .... (B.2)
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Figure B.1: Cartoon example of correlated (top) and partially correlated (bottom)
variables.

Another important consequence of Equation B.1 occurs when the variances are

completely correlated
(
ρij = 1

)
. The generalized error expression simplifies to

(δf )2 =

(
∂f

∂a

)2

(δa)2 +

(
∂f

∂b

)2

(δb)2 +

(
∂f

∂c

)2

(δc)2 + ... (B.3)

+2

(
∂f

∂a

)(
∂f

∂b

)
δaδb+ 2

(
∂f

∂a

)(
∂f

∂c

)
δaδc+ 2

(
∂f

∂b

)(
∂f

∂c

)
δbδc + ...

If a function can be expressed as a sum of terms with completely correlated errors

(i. e. f =
∑N

1
ai), the partial derivatives in B.1 become unity, and the error on f

simplifies to

(δf )2 = (δa1)
2 + (δa2)

2 + (δa3)
2 + ...+ 2δa1δa2 + 2δa1δa3 + 2δa2δa3 + ...

= (δa1 + δa2 + δa2 + ...+ δaN)
2. (B.4)
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Most fitting packages used in high energy physics afford the user access to the co-

variance matrix. The covariance matrix contains the information necessary to obtain

the error on the function based on the fit parameter errors. The standard form of the

covariance matrix for a three-parameter fit is

V =




c11 c12 c13

c12 c22 c23

c13 c23 c33




=




(δa1)
2

ρ
12
δa1δa2 ρ

13
δa1δa3

ρ
12
δa1δa2 (δa2)

2
ρ
23
δa2δa3

ρ13δa1δa3 ρ23δa2δa3 (δa3)
2




. (B.5)

The general form of the covariance matrix can be expanded to N parameters simply.

The terms along the diagonal are called the variances, and include the correlations

ρii, which are unity by definition. The off-diagonal elements of the covariance matrix

are termed the covariances.

B.2 Example - Poisson Statistics and Binomial Errors

The error on a simple counting error measurement observing N events is simply
√
N ,

with a fractional error
√
N/N . Often, N events are each weighted by some weights

wi. In a weighted scheme, then, the central value becomes
N∑
i=1

wi, and the error on

that central value becomes

√
N∑
i=1

w2

i
. For any quantity derived from the number of

events, the fractional error must remain the same. If, for example, the number of

events observed must be increased by a factor of two, the new quantity is 2N , while

the error in the quantity is 2
√
N . In a cross section measurement, the number of

events in each momentum bin must be modified by the luminosity, momentum bin

width, and efficiencies (see Section 8.1).

Efficiency errors can be calculated with the prescription in Equation B.1. An
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efficiency is usually thought of as some number of events a that satisfy a certain

condition divided by the total number of events N . Expressed mathematically

ε =
a

N
. (B.6)

Here a and N are correlated variables. It is convenient to frame the problem slightly

differently for error calculations.

Consider an experiment in which a events are measured and satisfy a certain

condition, while b events are measured that do not. The efficiency can then be

rewritten in terms of the uncorrelated variables a and b as

ε =
a

a+ b
. (B.7)

The general error prescription for uncorrelated variables (Equation B.2) indicates that

the error on ε is

(δε)2 =

(
∂ε

∂a

)2
(δa)2 +

(
∂ε

∂b

)2

(δb)2 (B.8)

where (
∂ε

∂a

)
=

b

(a+ b)2
;

(
∂ε

∂b

)
= −

a

(a+ b)2
. (B.9)

Substituting yields

(δε)2 =
1

(a+ b)4
(
b
2 (δa)2 + a

2 (δb)2
)
. (B.10)

The errors on a and b are
√
a and

√
b respectively, so the expression becomes

(δε)2 =
1

(a+ b)4
(
b
2
a+ a

2
b
)

=
ab

(a+ b)3
. (B.11)

Using the definition of efficiency above,

(δε)2 =

(
a

N

) (
N−a

N

)
N
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=
ε (1 − ε)

N
, (B.12)

so the error on the efficiency is given by

δε =

√
ε (1− ε)

N
. (B.13)

This formula for the statistical error on the efficiency is called the binomial error

formula. The error band of the efficiency must be physical, so the band is bounded

by the interval [0, 1].

B.3 Hyperbolic Tangent Fit

In Section 5.3.8, to smooth out the values for the trigger efficiencies from the Monte

Carlo, we employ a hyperbolic tangent of the form

εtrig = p1 · tanh (p2 · p
µ

T
+ p3) . (B.14)

This function is fit to the Monte Carlo points using the ����� pacakge from within

���. The ����� pacakge also supplies the covariance matrix for the fit. As an

example of the use of the covariance matrix, we’ll start with the expression for the

total error on the fitted efficiency function:

(δε)2 =

(
∂ε

∂p1

)2

(δp1)
2 +

(
∂ε

∂p2

)2

(δp2)
2 +

(
∂ε

∂p3

)2

(δp3)
2 +

+2

(
∂ε

∂p1

)(
∂ε

∂p2

)
ρp1p2

δp1δp2 + 2

(
∂ε

∂p1

)(
∂ε

∂p3

)
ρp1p3

δp1δp3 (B.15)

+2

(
∂ε

∂p2

)(
∂ε

∂p3

)
ρp2p3

δp2δp3 .

Using the cij parametrization of the covariance matrix, one can rewrite this expression

as

(δε)2 =

(
∂ε

∂p1

)2

c11 +

(
∂ε

∂p2

)2

c22 +

(
∂ε

∂p3

)2

c33 +
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+2

(
∂ε

∂p1

)(
∂ε

∂p2

)
c12 + 2

(
∂ε

∂p1

)(
∂ε

∂p3

)
c13 (B.16)

+2

(
∂ε

∂p2

)(
∂ε

∂p3

)
c23 .

From Equation B.14 and the identity

∂

∂x
tanh(u) =

∂u

∂x

(
1

cosh2(u)

)
, (B.17)

one can derive

∂ε

∂p1
= tanh (p2 · p

µ

T
+ p3) (B.18)

∂ε

∂p2
=

p1 · p
υ

T

cosh2 (p2 · p
µ

T
+ p3)

(B.19)

∂ε

∂p3
=

p1

cosh2 (p2 · p
µ

T
+ p3)

. (B.20)

The substitution into B.15 to obtain an expression for δε as a function of pµ
T
is left as

a nasty algebraic nightmare for the reader. The dashed curves on Figure 5.7 represent

ε± δε as a function of pµ
T
.

B.4 Weighted Average Calculation

For the associated jet correction in the data selection chapter, we use a weighted

average of three ������ samples. The weighted average is designed to give more

weight to more statistically significant samples. To compute the weighted average,

we use the following for each muon transverse momentum bin:

x =

∑(
1

σxi

)2
· xi

∑(
1

σxi

)2 (B.21)
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σx =

√√√√ 1

∑(
1

σxi

)2 , (B.22)

where xi and σi refer to the associated jet correction and the statistical error on the

associated jet correction from Monte Carlo sample i.

B.5 Maximum Likelihood Calculation

The output of the maximum likelihood fit (Section 6.2.1) is a single parameter, p1,

and its associated uncertainty. The obtain the weight for each event, the variables pµ
T

and prel
T

are read in, and the weight is calculated to be

wb =
p1 · ρb

(
prel
T
, pµ

T

)
p1 · ρb

(
prel
T
, p

µ

T

)
+ (1 − p1) · ρc

(
prel
T
, p

µ

T

) , (B.23)

where ρb is the normalized probability distribution for bottom quarks and ρc is the

distribution for background. Using the prescription outlined in the early sections of

this chapter, one finds

δw2

b =

(
ρb · ρc

(p1 · (ρb − ρc) + ρc)
2

)2

δp2
1
. (B.24)

To obtain fb for a single muon transverse momentum bin, the weights of all events

are summed and divided by the total number of events:

fb =

∑
wb

N
. (B.25)

Because the uncertainty on a single events depends linearly on the error on the �����

parameter, the error on all the event weights are nearly completely correlated. From

expression B.4, then, the error on fb is given by

δf 2
b
=

(∑
wb

N

)2

. (B.26)
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APPENDIX C

CODE DESCRIPTION

In the course of an analysis such as the one described in this dissertation, a lot of

code is generated that is not necessary for the meat of the analysis. This code can

originate from failed side tests, dead ends, parallel ideas with various subsets of the

data, etc. This Appendix is designed to indicate to the deeply interested reader the

location and bits of code used in each step of this analysis. This list should be used

with caution however, as it is not exhaustive. Only the main pieces of code are listed.

The information is all contained on d0chb.fnal.gov on the /projects/764 disk. Be-

cause much of the code was copied directly from VMS during the DØ migration to

unix, a great deal of the code still references files in the VMS format. All directo-

ries here are listed in unix format. Any references to the directory structure below

TMP$ROOT201:[DAVIS.LNR] in the VMS filename convention map identically to

that below ~kpdavis/lnr/lnr/, so filename translation is simple.

C.1 Data Selection

Before any measurement can be made, data must be selected. The data is selected

by ������ routines and written to a text output file that is used by the maximum

likelihood code and the code that creates the b-produced muon vectors. The code can

be found in ~kpdavis/lnr/lnr/nt_read/data/.
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C.2 Efficiencies

To obtain the efficiencies in Chapter 5, a PAW kumac loops over a ������ selection

function to fill histograms. The kumac then takes a ratio of the histograms to obtain

an efficiency. Many of the routines producing the plots in chapter are in the directories

listed below.

• Trigger Efficiency - ~kpdavis/lnr/lnr/effic/reco/ contains not only the code to

obtain the trigger efficieny, but also the function used to fit the MC points.

• Reconstruction Efficiency - ~kpdavis/lnr/lnr/effic/reco/ contains the routines

needed to obtain the reconstruction efficiency

• Associated Jet Cut Efficiency - ~kpdavis/lnr/lnr/effic/ajet/ contains associated

jet cut efficiency routines, including the kumac that obtains the weighted aver-

age of three MC samples.

• Quality Cut Efficiency - ~kpdavis/lnr/lnr/effic/other/ contains the relevant rou-

tines.

C.3 Cosmic Background Estimation

The cosmic ray muon background is estimated using a PAW kumac. The kumac calls

a selection function to fill scintillator time of flight histograms. The cosmic fraction

is fit within PAW and the resulting functions are written to a ������ routine. The

code for the cosmic background estimation is given in ~kpdavis/lnr/lnr/cos_rej/.
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C.4 Maximum Likelihood Code

The maximum likelihood fit is an integral, but complicated, component of this analy-

sis. Its subcomponents, each of which may be fairly sophisticated, are located in

a number of places. For each major subcomponent, the main working directory is

listed. Many of the components are simple ������, but some involve running PAW

kumacs between running pieces of code.

C.4.1 Obtaining the Sequential/Direct Ratio

To begin with, the ratio of sequential to direct decays is obtained. The code for

obtaining this ratio is given in ~kpdavis/lnr/lnr/bfrac/corr/.

C.4.2 Creating p
rel

T
Fits

The prel

T
fits are created mainly by hand, but the kumac that creates the histograms to

be fitted and obtains normalizations of functions once the fit is performed is located

in ~kpdavis/lnr/lnr/ptrel_fits/onebin/mc/.

C.4.3 The Maximum Likelihood Fit

Once the probability functions are obtained, they are normalized and put in the direc-

tory ~kpdavis/lnr/lnr/ptrel_fits/functions/3dfmc/. The maximum likelihood code,

found in ~/kpdavis/lnr/lnr/max_like/3dfd/ uses these functions as input distribu-

tions.



208

C.4.4 Viewing Maximum Likelihood Fit Results

The kumac used to view the quality of the fit obtained in the maximum likelihood

code is given in ~kpdavis/lnr/lnr/kumacs/contrib_ptrel/.

C.4.5 Obtaining the b-fraction

The code that takes the results of the maximum likelihood fit and transforms it into

usable vectors contained in ~kpdavis/lnr/lnr/make_hists/3dfd/.

C.4.6 Cross-checking the b-fraction

The kumac that compares the b-fraction obtained in the data to that found in the

MC is contained in the directory ~kpdavis/lnr/lnr/bfrac/3dfd/.

C.5 Unsmearing

The Bayesian unsmearing is another notable feature of the analysis. The code that

prepares the smearing matrix is located in ~kpdavis/lnr/lnr/unfold2/, and the code

that actually performs the unsmearing is located in the same directory.

C.5.1 Results of the Unsmearing

The kumac located in ~kpdavis/lnr/lnr/plot_mupt/ plots the results of the unsmear-

ing. This kumac also calculates the unsmearing factor used in the cross section cal-

culations.
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C.5.2 Unsmearing Uncertainties

The uncertainties associated with the unsmearing of the muon transverse momen-

tum spectrum are obtained by running the code in ~kpdavis/lnr/lnr/unfold2/ under

slightly different conditions. The vectors are save and combined with the kumac in

~kpdavis/lnr/lnr/unfold/.

C.6 Cross Sections

The cross section measurements in Chapter 8 are created by pulling vectors in from

many different directories and combining them with the plot_mu_incl.kumac in the

directory ~kpdavis/lnr/lnr/kumacs/muon_cross/.

C.7 Other Code

Many of the theoretical plots and illustrative cartoons used in this thesis are created

by kumacs in the directory ~kpdavis/lnr/lnr/kumacs/random/.
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